Anxiolytic-like Effects of Panax ginseng on the Elevated Plus-maze Model in Mice

  • CHA Hwa-Young (College of Pharmacy, Chungbuk National University) ;
  • SEO Jeong-Ju (College of Pharmacy, Chungbuk National University) ;
  • PARK Jeong-Hill (College of Pharmacy, Seoul National University) ;
  • EUN Jae-Soon (College of Pharmacy, Woosuk University) ;
  • LEE Seung-Ho (College of Pharmacy, Chungbuk National University) ;
  • HWANG Bang-Yeon (College of Pharmacy, Chungbuk National University) ;
  • HONG Jin-Tae (College of Pharmacy, Chungbuk National University) ;
  • OH Ki-Wan (College of Pharmacy, Chungbuk National University)
  • Published : 2005.09.01

Abstract

This study was performed to investigate the anxiolytic-like effects Panax ginseng in mice using the elevated plus-maze model. Furthermore, the anxiolytic-like effects of Panax ginseng were compared to a known active anxiolytic drug, diazepam. Ginseng total saponin (GTS, 100 mg/kg) from red ginseng (RG), sun ginseng (SG) total extract (50 mg/kg), butanol fraction of SG(25 and 50 mg/kg) and ginsenosides ($Rb_1,\;Rg_1,\;and\;Rg_5$ and Rk mixture) significantly increased the number of open arm entries and the time spent on the open arm, compared with that of control. However, Red ginseng (RG) total extract (l00 mg/kg), GTS (25, 50 mg/kg), SG total extract (25 mg/kg) and ginsenosides ($Rg_{3}-R\;and\;Rg_{3}-S$) did not increase the number of open arm entries and the time spent on the open arm. On the other hand, butanol fraction of RG (l00 mg/kg), total extract of SG (50 mg/kg), butanol fraction of SG (50 mg/kg), ginsenosides ($Rb_{1},\;and\;Rg_{5}$ and Rk mixture) decreased the locomotor activity, in a similar fashion to diazepam. These data support that ginseng has the anxiolytic-like effects and the anxiolytic potential of SG was stronger than that of RG. Ginsenosides $Rb_{1},\;Rg_{1},\;and\;Rg_{5}$ and Rk mixture play important role on the anxiolytic-like effects of Panax ginseng. We provide evidence that ginseng and some ginsenosides may be useful for the treatment of anxiety.

Keywords

References

  1. Baek, N. I., Kim, D. S., Lee, Y H., Park, J. D. and Kim, S. I. (1996). Ginsenosides $Rh_4$: a genuine damarane glycoside from Korea red ginseng. Planta Medica 62, 86-87 https://doi.org/10.1055/s-2006-957816
  2. Beaubrum, G. and Gray, G. E. (2000). A review of herbal medicines for psychiatric disorders. Psychiatr. Servo 51, 1130-1134 https://doi.org/10.1176/appi.ps.51.9.1130
  3. Dalvi, A. and Rodgers, R. J. (1999). Behavioral effects of diazepam in the murine plus-maze: flumazenil antagonism of enhanced dipping but not disinhibition of open-arm avoidance. Pharmacol. Biochem. Behav. 62, 727-734 https://doi.org/10.1016/S0091-3057(98)00220-2
  4. Dawson, G. R. and Tricklebank, M. D. (1995). Use of the elevated plus-maze in the search for novel anxiolytic agents. Trends in Pharmacological Sciences 16, 33-36 https://doi.org/10.1016/S0165-6147(00)88973-7
  5. Eisenberg, R. B., Davis, S. L., Ettner, S., Appel, S., Wilkey, M., Rompay, V. and Kessler, R. C. (1998). Trends in alternative medicine use in the United States, 1990-1997: results of a follow-up national survey. J. Am. Med. Assoc. 280, 1569-1575 https://doi.org/10.1001/jama.280.18.1569
  6. Fernandes, C., Arnot, M. I., Irvine, E. E., Bateson, A. N., Martin, J. L. and File, S. E. (1999). The effects of treatment regimen on the development of tolerance to the sedative and anxiolytic effects of diazepam. Psychopharmacology 145, 251-259 https://doi.org/10.1007/s002130051056
  7. Fogg, S. (1996). A review of the validity and variability of the elevated plus-maze as an animal model of anxiety. Pharmacol. Biochem. Behav. 54, 21-30 https://doi.org/10.1016/0091-3057(95)02126-4
  8. Friede, M. and Freudenstein, J. (2002). Antidepressant and anxiolytic effect of St. John's wort extract ZE-117. Eur. Psychiatry 17, 96
  9. Heinrich, M. and Gibbons, S. (2001). Ethnopharmacology in drug discovery: an analysis of its role and potential contribution. J. Pharm. Pharmacol. 53, 425-432 https://doi.org/10.1211/0022357011775712
  10. Jung, N. P. and Jin, S. H. (1996). Studies on the physiological and biochemical effects of Korea red ginseng. J. Ginseng Sci., 20, 431-471
  11. Kim, H. S., Hwang, S. L., Nah, S. Y. and Oh, S. (2001). Changes of [$^3H$]MK-801, [$^3H$]muscimol and [$^3H$]flunitrazepam binding in rat brain by the prolonged ventricular infusion of ginsenosides Rc and $Rg_1$. Pharmacological Res. 43, 473-479 https://doi.org/10.1006/phrs.2001.0809
  12. Kim, H. S., Kang, J. G., Rheu, H. M., Cho, D. H. and Oh, K. W. (1995a). Blockade of ginseng total saponins of the development of methamphetamine reverse tolerance and dopamine receptor supersensitivity in mice. Planta Medica 61, 22-25 https://doi.org/10.1055/s-2006-957991
  13. Kim, H. S., Kang, J. K., Seong, Y. H., Nam, K. Y. and Oh, K. W. (1995b). Blockade by ginseng total saponin the development of cocaine induced reverse tolerance and dopamine receptor supersensitivity in mice. Pharmacol. Biochem. Behav. 50, 2327
  14. Kim, H. S., Hong, Y. T., Oh, K. W., Seong, Y. H., Rheu, H. M., Oh, S., Park, W. K.. and Jang, C. G. (1998a). Inhibition by ginsenosides Rb1 and Rg1 of methamphetamine-induced hyperactivity, conditioned place preference and dopamine receptor supersensitivity in mice. Gen. Pharmacol. 30, 783-789 https://doi.org/10.1016/S0306-3623(97)00330-3
  15. Kim, H. S., Hong, Y. T. and Jang, C. G. (1998b). Effects of the ginsenosides $Rg_1$ and $Rb_1$ on morphine-induced hyperactivity and reinforcements in mice. J. Pharm. Pharmacol. 50, 555-560 https://doi.org/10.1111/j.2042-7158.1998.tb06198.x
  16. Kim, H. S., Kim, K. S. and Oh, K. W (1999). Inhibition by ginsenosides Rb1 of cocain-induced hyperactivity, conditioned place and dopamine receptor supersensitivity in mice. Pharmacol. Biochem Behav. 63, 407-412 https://doi.org/10.1016/S0091-3057(99)00020-9
  17. Kim, W. Y., Kim, J. M., Han, S. B., Lee, S. K., Kim, N. D., Park, M. K., Kim, C. K. and Park, J. H. (2000). Steaming of ginseng at high temperature enhances biological activity. J. Nat. Prod. 63, 1702-1704 https://doi.org/10.1021/np990152b
  18. Kimura, T., Saunders, P. A., Kim, H. S., Rheu, H. M., Oh, K. W. and Ho, I. K. (1994). Interactions of ginsenosides with ligandbindings of $GABA_A$ and $GABA_B$ receptors. Gen. Pharmacol. 25, 193-199 https://doi.org/10.1016/0306-3623(94)90032-9
  19. Kulkarni, S. K. and Reddy, D. S. (1996). Animal behavioral models for testing anti-anxiety agents. Methods and Findings in Exp. and Clinic. Pharmacol. 18, 219-230
  20. Kwon, S. W., Han, S. B., Park, I. H., Kim, J. M., Park, M. K. and Park, J. H. (2001). Liquid chromatographic determination of less polar ginsenosides in processed ginseng. J. Chromatography A, 921, 335-339 https://doi.org/10.1016/S0021-9673(01)00869-X
  21. Lee, S. P., Honda, K., Rhee, Y. H. and Inoue, S. (1990). Chronic intake of Panax ginseng extract stabilizes sleep and wakefulness in food-deprived rats. Neurosci. Lett. 111, 217-221 https://doi.org/10.1016/0304-3940(90)90371-F
  22. Park, I. H., Kim, J. M., Piao, L. Z., Kwon S. W., Kim, N. Y., Han, S. B., Park, M. K. and Park, J. H. (2002a) Four new acetylated ginsenosides from processed ginseng (Sun Ginseng). Arch. Pharm. Res. 25, 837-841 https://doi.org/10.1007/BF02977001
  23. Park, I. H., Kim, N. Y., Han, S. B., Kim, J. M., Kwon S. W., Kim, H. J., Park, M. K. and Park, J. H. (2002b). Three new dammarane glycosides from heat processed ginseng. Arch. Pharm. Res. 25, 428-432 https://doi.org/10.1007/BF02976595
  24. Pellow, S., Chopin, P., File, S. E. and Briley, M. (1985). Validation of open: closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J. Neurosci. Methods 14, 149-167 https://doi.org/10.1016/0165-0270(85)90031-7
  25. Pellow, S. and File, S. E. (1986). Anxiolytic and anxiogenic drug effects on exploratory activity in an elevated plus-maze: a novel test of anxiety in the rat. Pharmacol. Biochem. Behav. 24, 525-529 https://doi.org/10.1016/0091-3057(86)90552-6
  26. Rang, H. P., Dale, M. M. and Ritter, J. M. (1995). Pharmacology (3rd ed.), Anxiolytic and hypnotic drugs, Churchill Livingstone, Edinburg, pp. 528-529
  27. Rex, A., Stephens, D. N. and Fink, H. (1996). Anxiolytic action of diazepam and abecamil in a modified open field test. Pharmacol. Biochem. Behav. 53, 1005-1011 https://doi.org/10.1016/0091-3057(95)02121-3
  28. Rex, A., Morgenster, E. and Fink, H. (2002). Anxiolytic-like effects of Kava-Kava in the elevated plus-maze test-a comparison with diazepam. Progress in Neuro-Psychopharmacol. & Biol. Psychiatry 26, 855-860 https://doi.org/10.1016/S0278-5846(01)00330-X
  29. Rodgers, R. J. and Johnson, N. J. T. (1997). Behaviorally selective effects of neuroactive steroids on plus-maze in mice. Pharmacol. Biochem. Behav. 59, 221-232 https://doi.org/10.1016/S0091-3057(97)00339-0
  30. Ryoji, K., Hiromich, B., Osamu, T., Yuhichiro, S. and Tohru, F. (1983). Saponins of red ginseng. Chem. Pharm. Bull. 31, 2120-2125 https://doi.org/10.1248/cpb.31.2120
  31. Soderpalm, R., Hjorth, S. and Engel, J. A. (1989). Effects of 5-$HT_{1A}$ receptor agonists and L-5-HTP in Montgermory's conflict test. Pharmacol. Biochem. Behav. 32, 259-265 https://doi.org/10.1016/0091-3057(89)90242-6
  32. Tokuyama, S., Oh, K. W., Kim, H. S., Takahashi, M. and Kaneto, H. (1992). Blockade by ginseng extract of the development of reverse tolerance to the ambulation-accelerating effect of methamphetamine in mice. Japan J. Pharmacology 59, 423-425 https://doi.org/10.1254/jjp.59.423
  33. Treit, D. (1985). Animal models for the study of anti-anxiety agents: a review. Neuroscience Biobehav. Review 9, 203-222 https://doi.org/10.1016/0149-7634(85)90046-6
  34. Une, H. D., Sarveiya, V. P., Pal, S. C., V. S. Kasture, V. S. and Kasture, S. B. (2001). Nootropic and anxiolytic activity of saponins of Albizzia lebbeck leaves. Pharmacol. Biochem. Behav. 69, 439-444 https://doi.org/10.1016/S0091-3057(01)00516-0