Single Oral Toxicity Study of 3-Methoxy-6-Allylthiopyridazine in Rats

Ki-Hwa Jung*

College of Pharmacy, Duksung Women's University, Seoul, Korea

(Recevied June 8, 2005; Accepted June 21, 2005)

Abstract – The single dose toxicity of 3-methoxy-6-allylthiopyridazine (K-6) was studied with Sprague-Dawley rats. K-6 was administered orally with dosages of 4.0, 3.0, 2.0, 1.5, 1.0, 0.5, 0.25 and 0.1 g/kg to the rats. We observed daily the number of death, clinical signs, body weights and gross findings. All rats (6) were dead within a day after administration when doses of 4.0 and 3.0 g/kg were administered. When dose of 2.0 g/kg was administered, 2 rats among 3 rats were dead. Any significant toxicity below 1.5 g/kg of K6 was not observed when the different doses of 1.5, 1.0, 0.5, 0.25 and 0.1 g/kg were administered to 6 rats respectively.

Keywords \square 3-Methoxy-6-allythiopyridazine, single oral toxicity, rats

INTRODUCTION

Dietary organosulfur compunds of garlic were shown to inhibit the proliferation of tumor cells (Sundaram *et al.*, 1996; Siegers *et al.*, 1999; Thatte *et al.*, 2000). Since hepatocellular carcinoma is one of the most lethal malignancies and there is no effective and chemotherapeutic potential of the synthetic allythiopyridazine derivatives on hepatocarcinoma cells (Fukushima *et al.*, 1997; Reddy *et al.*,;1993; Takahashi *et al.*, 1992; Takada *et al.*, 1994; Jung M.Y. *et al.*, 2001).

One of the most well known ingredient of garlic is allicin, which is chemically unstable and has evil-smelling odor. It is necessary to develop other stable and odorless compounds, that have chemopreventive and chemotherapeutic activities (Dausch *et al.*, 1990; Dorant *et al.*, 1990; Hayes *et al.*, 1987; Shin H.S. *et al.*, 2002; Kwon S.K. *et al.*, 1998; Sparnins *et al.*, 1998).

MATERIALS AND METHODS

Animals husbandry and maintenance

The male or female SD rats (110-160 g) were supplied from Seoul Clinical Laboratories. All SD rats were used after one week of acclimating period.

All animals were house in wire cages at 23±3°C and 55±15% humidity and provided diet and water

*Corresponding author

Tel: +82-2-901-8383, Fax: +82-2-901-8386

E-mail: khjung@duksung.ac.kr

Treatments

In the preliminary test five different doses of K-6 (4.0, 3.0, 2.0, 1.5 and 1.0 g/kg) were administered to 3 rats respectively and in the main test five different doses of K-6 (1.5, 1.0, 0.5, 0.25 and 0.1 g/kg) were administered to 6 rats respectively.

Effects on general behavior

The methods used were based on the procedures described by Irwin(Irwin, 1968).

Rats were administered orally with K-6(1.0 and 1.5g/kg), and the general behavior were observed at 0.5, 1, 2 and 4 hrs after the drug administration.

Body weight

Individual body weights of rats were measured shortly before the test article administration and on day 1, 3, 7 and 14 after the treatment thereafter.

Necropsy findings

On day 14 after the treatment, all rats were necropsied with special attention to all vital organs and tissues.

Statistical analysis

Body weight value were presented by mean±S.D.

The statistical significances between groups were assessed by ANOVA F-test.

Differences is statistically significant(p<0.001).

124 Ki-Hwa Jung

RESULTS AND DISCUSSION

Preliminary test

After administering 1.0, 1.5, 2.0, 3.0 and 4.0g/kg as a preliminary test, all rats(6) were dead within a day after administration when doses of 4.0 and 3.0g/kg were administered. When dose of 2.0g/kg was administered, 2 rats among 3 rats were dead. We tested for dose level of below 1.5g/kg at which no rats were dead(Table I, II).

Effects on general behavior

Oral administration of K-6 at does of 1.0 and 1.5g/kg showed no observable changes in behavioral, neurological and autonomic profiles in rats during 4 hrs periods(Table III).

Clinical observation

Clinical signs were checked for 14 days after dosing and then no rats in both sexes showed changes (Table IV).

Body weight

There were no notable changes which could be attributed to the treatment of test article(Table V).

Gross finding

Neither female nor male rats were found dead below 1.5g/kg of K6 during the testing period (Table III, IV). In this experiment, we observed decreased locomotor activity, prone position, crouching position or ataxic agit. In 0.1 g/kg treated group,

Table I. Gross observation of necropsy in rats administered orally with K-6 Preliminary test

Sex	Dose (mg/kg) —	Frequency		
		Decedents	Surivors	
	1.0	0/0	3/3	
	1.5	0/0	3/3	
Male	2.0	2/3	1/3	
	3.0	3/3	0/0	
	4.0	3/3	0/0	

Table III. General behavior of rats administered orally with K-6

Items	0.5	1	1.5	2	4(hr)
items	ABC	ABC	ABC	ABC	ABC
Locomotor activity	000	000	000	000	000
Writhing response	000	000	000	000	000
Fighting	000	000	000	000	000
Stereotyped behavior	000	000	000	000	000
Convulsion	000	000	000	000	000
Tremor	000	000	000	000	000
Exophthalmos	000	000	000	000	000
Ptosis	000	000	000	000	000
Piloerection	000	000	000	000	000
Tail elevation	000	000	000	000	000
Traction	000	000	000	000	000
Motor incoordination	000	000	000	000	000
Muscle tone	000	000	000	000	000
Catalepsy	000	000	000	000	000
Righting reflex	000	000	000	000	000
Pain response	000	000	000	000	000
Pinna reflex	000	000	000	000	000
Pupil reflex	000	000	000	000	000
Skin color	000	000	000	000	000
Respiration	000	000	000	000	000
Lecrimation	000	000	000	000	000
Salivation	000	000	000	000	000
Urination	000	000	000	000	000
Diarrhea	000	000	000	000	000
Vocalization	000	000	000	000	000
Death	000	000	000	000	000_

Each value represents the number of abnormalities on general behavior (n=6).

A; Control(corn oil), B; K-6 1.0 g/kg, C; K-6 1.5 g/kg

both female and made rats showed those behaviors 2 hour after administration. In 0.5 g/kg treated group, 2 rats showed decreased locomotor activity, crouching position and ataxic agit 2 hours after administration, but didn't show those abnormal behaviors one day after administration. In 0.1 and 0.25g/kg treated groups, we couldn't observe abnormal behaviors. Any significant toxicity below 1.5g/kg of K-6 was not observed when the different doses of 1.5, 1.0, 0.5, 0.25 and 1.0g/kg were

Table II. Body weights of rats administered orally with K-6

Cov	Dana(a/lan)	Body weights after treatment (days)				
Sex	Dose(g/kg)	0	1	3	7	14
Male	1.0	156.33±1.53(3)	182.0±11.36(3)	229.93±27.59(3)	268.67±26.86(3)	260.67±17.24(3)
	1.5	155.67±2.08(3)	173.67±7.01(3)	212.67±25.01(3)	244.0±50.48(3)	269.33±23.86(3)
	2.0	$175.27 \pm 1.15(3)$	149.33±1.15(3)	$153.5\pm0.71(2)$	162(1)	172(1)
	3.0	$157.20\pm3.03(5)$	(0)	(0)	(0)	(0)
	4.0	157.20±3.03(5)	(0)	(0)	(0)	(0)

Table IV. Clinical signs of rats administered orally with K6

	•		•
Sex	Dose(g/kg)	observations	Range(Day)
	Control	Appears normal	0 ~ 14
	0.1	Appears normal	$0 \sim 14$
Male	0.25	Appears normal	0 ~ 14
Iviaic	0.5	Appears normal	$0 \sim 14$
	1.0	Appears normal	0 ~ 14
	1.5	Appears normal	$0 \sim 14$
	Control	Appears normal	0~14
	0.1	Appears normal	0 ~ 14
Female	0.25	Appears normal	$0 \sim 14$
remare	0.5	Appears normal	$0 \sim 14$
	1.0	Appears normal	0 ~ 14
	1.5	Appears normal	0 ~ 14

administered to 6 rats respectively(Table VI). The single dose toxicity of 3-methoxy-6-allylthiopyridazine (K-6) was studied with Sprague-Dawley rats. K-6 was administered orally with dosages of 4.0, 3.0, 2.0, 1.5, 1.0, 0.5, 0.25 and 0.1g/kg to the rats. We observed daily the number of death, clinical signs, body weights and gross findings. Based on the results, it was concluded that a single oral dose of K-6 did not produce any toxic effect in Sprague-Dawley rats at dose levels of 1.5g/kg or below. According to above results, the minimal lethal dose was considered to be over 1.5g/kg body weight for rats.

ACKNOWLEDGMENTS

This research was supported in part by the fund 2004, from Duksung Women's University. Also supported by a Promoting Program for the Basis of Women's University Grants R06-

Table VI. Gross observation of necropsy in rats administered orally with K-6 main test

Sex	Dos	Observation	Frequency	
Sex	(mg/kg)	•	Decedents	Survivors
Male	0.1	N.G.F.a)	0/0b)	6/6
	0.25	N.G.F.	0/0	6/6
	0.5	N.G.F.	0/0	6/6
	1.0	N.G.F.	0/0	6/6
	1.5	N.G.F.	0/0	6/6
Female	0.1	N.G.F.	0/0	6/6
	0.25	N.G.F.	0/0	6/6
	0.5	N.G.F.	0/0	6/6
	1.0	N.G.F.	0/0	6/6
	1.5	N.G.F.	0/0	6/6

- a) No gross finding
- b) Values are expressed as animal numbers

2002-004-01007-0 from KOSEF. K-6 was provided by Professor Soon-Kyung Kwon, Duksung Women's University

REFERENCES

Sundaram, S. G., Milner J. A. (1996). Diallyl disulfide inhibits the proliferation of human tumor cells in culture. *Biochem. Biophys. Acta.* **1315**, 15-20.

Siegers, C. P., Steffen, B., Robke, A., Pentz, R. (1999). The effects of garlic preparations against human tumor cell proliferation. *Phytomedicine* **6**, 7-11.

Thatte U., Bagadey, S., Dahanukar, S. (2000). Modulation of programmed cell death by medicinal plants. *Cell Mol. Biol.* **46**, 199-214.

Fukushima, S., Takada, N., Hori, T., Wanibuchi, H. (1997). Cancer prevention by organosulfur compounds from garlic

Table V. Body weights of rats administered orally with K-6 main test

Sex	Dana(a/laa)	Body weights after treatment (days)						
	Dose(g/kg) -	0	1	3	7	14		
Male	Control	153.00±1.58(6) ^{a)}	166.20±1.10(6)	206.40±3.85(6)	245.20±7.29(6)	300.00±8.72(6)		
	0.1	153.00±0.71(6)	154.40±1.67(6)	182.40±11.87(6)	203.60±0.89(6)	276.00±4.69(6)		
	0.25	151.80±2.17(6)	156.00±2.45(6)	178.00±4.00(6)	182.40±4.34(6)	268.40±9.53(6)		
	0.5	152.80±0.84(6)	162.80±5.21(6)	189.60±8.05(6)	187.60±8.29(6)	270.00±10.58(6		
	1.0	158.50±1.72(6)	173.17±4.54(6)	187.50±6.22(6)	189.33±5.64(6)	278.17±5.85(6)		
	1.5	155.67±1.63(6)	176.00±5.25(6)	178.33±3.72(6)	184.50±3.67(6)	277.17±5.53(6)		
	Control	118.40±1.14(6)	128.80±3.35(6)	155.60±3.86(6)	$158.80\pm3.63(6)$	212.40±14.79(6		
	0.1	121.80±1.14(6)	136.00±5.10(6)	156.00±4.47(6)	168.80±8.56(6)	199.60±14.31(6		
	0.25	124.00±7.31(6)	133.20±6.42(6)	155,20±11.10(6)	167.20±12.05(6)	202.40±14.38(6		
	0.5	120.60±1.52(6)	122.80±2.28(6)	135.20±13.31(6)	144.40±7.13(6)	198.80±15.59(6		
	1.0	120.83±2.32(6)	126.00±3.58(6)	158.67±1.21(6)	156.50±0.84(6)	216.67±4.87(6)		
	1.5	120.83±1.72(6)	131.83±4.54(6)	158.00±1.67(6)	159.33±1.37(6)	215.67±6.35(6)		

a) (n) = number of animals

Defferences is statistically significant (p<0.001).

Each value represents the mean \pm S.D.

126 Ki-Hwa Jung

and onion. J. Cell Biochem Suppl. 27, 100-105.

- Reddy, B.S., Rao, C.V., Rivenson, A., Kelloff, G. (1993). Chemoprevention of colon carcinogenesis by organosulfur compounds. *Cancer Res.* 54, 3493-3498.
- Takahashi, S., Hakoi, K., Yada, H., Hirose, M., Ito, N., Fukushima, S. (1992). Enhancing effects of diallyl sulfide on hepatocarcinogenesis and inhibitory actions of the related diallyl disulfide on colon and renal carcinogenesis in rats. *Carcinogenesis* 13, 1513-1518.
- Takada, N., Matsuda, T., Otoshi, T. *et al.* (1994) Enhancement by organosulfur compounds from garlic and onions of diethylnitrosamine-induced glutathione S-transferase positive foci in the rat liver. *Cancer Res.* **54**, 2895-2899.
- Jung, M. Y., Kwon, S. K., Moon, A. (2001). Chemopreventive allylthiopyridazine derivatives induce apoptosis in SK-Hep-1 hepatocarcinoma cells through a caspase-3-dependent mechanism, *Eropean J. Cancer*, 37, 2104-2110.
- Dausch, J. G. and Nixon, D. W. (1990). A review of its relationship to malignant disease. *Preventive Medicine* 19, 346.
- Dorant, E., Brandt, P. A., Goldbolm, R. A., Hermus, R. J. J. and Sturmans, F. (1990). Garlic and its singnificance for the prevention of cancer in humans a critical view. *Br. J. Cancer* **67**, 424.
- Hayes, M. A., Rushmore, T. H. and Goldberg, M. T. (1987). Inhibition of hepatocarcinogenic responses to 1,2-dimethyl-

- hydrazine by diallyl sulfide, a component of garlic oil. *Carcinogenesis* **8**, 1155.
- Shin, H. S., Kwon, S. K. (2002). Protective effects of synthetic allylthiopyridazine derivatives on carbon tetrachloride-induced hepatotoxicity. *Duksung Bull. Pharm. Sci.* **13**, 47-50.
- Kwon, S. K., Lee, E. B., Kim M.K. and Park Y. N. (1998). Systhesis of allylthiopyridazine derivatives and hepatoprotective activities. *Duksung Bull. Pharm. Sci.* 9, 3-15.
- Sparnins, V. L., Barany, G. and Wattenberg, L. W. (1988). Effects of organosulfur compounds from garlic and onions on benz[a]pyrene-induced neoplasia and glutathione Stransferase activity in the mouse. *Carcinogenesis* 9, 131.
- Irwin, S. In., Nodine, J. H. and Siegler, P. E. (1964). Animal and clinical pharmacologic techniques in drug evaluation. Yearbook Medical Publishers, Chicago, 36-54.
- Oh, W. Y., Lee, S. H., Kim, H. J, Jew, S. S, Park, H. G, Ham, K. S, Cho, J. S and Lee, S. M. (2001). Intravenous single dose toxicity study of JG-381 in rats, *Applied Pharmacology* 9, 231-235.
- Roh, Y. W., Zhang, H. S., Ji H. J., Jung, E. Y., Sin, J. S., Kang, M. J., Ahn, K. K., Choi, Y. S., Lee, J. W. and Kang, J. K. (2002). Intravenous single dose and four-week repeated dose toxicity study of YHB216, a recombinant human erythropoietin, in beagle dogs. *J. Applied Pharmacol.* 10, 59-69.