Involvement of Intracellular Ca2+-and PI3K-Dependent ERK Activation in TCDD-Induced Inhibition of Cell Proliferation in SK-N-SH Human Neuronal Cells

  • Published : 2005.06.01

Abstract

2,3,7,8-Tetrachlorodibenzo-p-dioxin(TCDD) has previously shown to induce neurotoxicity through intracellular $Ca^{2+}$ increase in rat neurons. In this study we investigated the role and signaling pathway of intracellular $Ca^{2+}$ in TCDD-induced inhibition of neuronal cell proliferation in SK-N-SH human neuronal cells. We found that TCDD(10nM) rapidly increased the level of intracellular $Ca^{2+}$, which was completely blocked by the extracellular $Ca^{2+}$ chelation with EGTA (1 mM) or by pretreatment of the cells with the non-selective cation channel blocker. flufenamic acid (200 ${\mu}M$). However, pretreatment of the cells with dantrolene (25 ${\mu}M$) and TMB-8(10 ${\mu}M$), intracellular $Ca^{2+}$-release blockers, or a voltage-sensitive $Ca^{2+}$ channel blocker, varapamil (100 ${\mu}M$), failed to block the TCDD-induced $Ca^{2+}$ increase in the cells. In addition, TCDD induced a rapid and transient activation of phatidvlinositol 3-kinase (PI3K) and extracellular signal-regulated kinase 1/2(ERK1/2), which was ingnificantly blocked by the pretreatment with BAPTA, an intracellular $Ca^{2+}$ chelator, and LY294002, a PI3K inhibitor. Furthermore, inhibitors of PI3K, ERK, or an intracellular $Ca^{2+}$ chelator further potentiated the anti-proliferative effect of TCDD in the cells. Collectively, the results suggest that intracellular $Ca^{2+}$ and PI3K-dependent activation of ERK 1/2 may be involved in the TCDD-induced inhibition of cell proliferation in SK-N-SH human neuronal cells.

Keywords

References

  1. Carpenter, D.O., Stoner, C. R., Lawrence, D. A. (1997). Flow cytometric measurements of neuronal death triggered by PCBs. Neurotoxicol., 18, 507-513
  2. Chen, W. G, Chang, Q., Lin, Y., Meissner, A, West, A. E., Griffith, E. C., Jaenisch, R., Greenburg, M. E. (2003). Derepression of BDNF transcription involves calcium-dependent phosphoryla-tion of MeCP2. Science 302, 885-889 https://doi.org/10.1126/science.1086446
  3. Cheng, A., Wang, S., Yang, D., Xiao, R., Mattson, M. P. (2003). Calmodulin mediates brain-derived neurotrophic factor or cell survival signaling upstream of Akt kinase in embryonic neocortical neurons. J Biol. Chem. 278, 7591-7599 https://doi.org/10.1074/jbc.M207232200
  4. Davis, J. W., Lauer, F. T., Burdick, A. D., Hudson, L.G., Burchiel, S. W. (2001). Prevention of apoptosis by 2,3,7,8-tetrachlorodibenzo-pdioxin (TCDD) in the MCF-10A cell line: correlation with increased transforming growth factor a production. Cancer Res. 61, 3314-3320
  5. Damodar R. C., Marwaha S., Patti R, Raghunath M., Duhaime A. C., Sutton L., Phillips P. C. (2001). Role of MAP kinase pathways in primitive neuroectodermal tumors. Anticancer Res, 21, 2733-2738
  6. Egea, J., Espinet, C., Soler, R. M., Dolcet, X., Yuste, V. J., Encinas, M., Iglesias, M., Rocamora, N., Comella, J. X. (2001). Neuronal survival induced by neurotrophins requires calmodulin. J Cell Biol. 154, 585-597 https://doi.org/10.1083/jcb.200101023
  7. Fahlman, C. S., Bickler, P. E., Sullivan, B., Gregory, G. A. (2002). Activation of the neuroprotective ERK signaling pathway by fructose-1,6-bisphosphate during hypoxia involves intracellular Ca2 _ and phospholipase C. Brain Res. 958, 43-51 https://doi.org/10.1016/S0006-8993(02)03433-9
  8. Hanneman, W. H., Legare, M. E., Barhoumi, R., Burghardt, R. C., Safe, S. and Tiffany-Castiglioni, E. (1996). Stimulation of calcium uptake in cultured rat hippocampal neurons by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicology, 112, 19-28 https://doi.org/10.1016/0300-483X(96)03346-X
  9. Hassoun, E. A., Wilt, S. C., Devito, M. J., Van Birgelen, A., Alsharif, N. Z., Birnbaum, L. S., Stohs, S. J. (1998). Induction of oxidative stress in brain tissues of mice after subchronic exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicological Science 42, 23-27 https://doi.org/10.1093/toxsci/42.1.23
  10. Henshel, D. S., Martin, J. W., DeWitt, J. C. (1997). Brain asymmetry as a potential biomarker for developmental TCDD intoxication: a dose-response study. Environmental Health Perspectives, 105, 718-725 https://doi.org/10.2307/3433727
  11. Jin, D. Q., Jung, J. W, Lee, Y. S., Kim, J. A. (2004). 2,3,7,8-Tetrachlorodibenzo-p-dioxin inhibits cell proliferation through arylhydrocarbon receptor-mediated G 1 arrest in SK-N-SH human neuronal cells. Neurosci Lett. 363, 69-72 https://doi.org/10.1016/j.neulet.2004.03.047
  12. Kim, S. Y., Yang, J. H. (2005). Neurotoxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin in cerebellar granule cells. Exp Mol. Med. 37, 58-64 https://doi.org/10.1038/emm.2005.8
  13. Lawrence, B. P., Meyer, M., Reed, D. J., Kerkvliet, N. I. (1999). Role of glutathione and reactive oxygen intermediates in 2, 3,7,8-tetrachlorodibenzo-p-dioxin-induced immune suppression in C57Bl/6 mice. Toxicological Science. 52, 50-60 https://doi.org/10.1093/toxsci/52.1.50
  14. Lee, Y. S., Jin, D. Q., Park, S. H., Han, S. Y., Kim, H. S., Jeong, T. C., Huh, K., Kim, J. A. (2002). 2,3,7,8-tetrachlorobenzo-p-dioxin inhibits proliferation of SK-N-SH human neuronal cells through decreased production of reactive oxygen species. Free Radical Res. 36, 1283-1289 https://doi.org/10.1080/1071576021000016517
  15. Legare, M. E., Hanneman, W. H., Barhoumi, R., Tiffany-Castiglioni, E. (1997). The effects of 2,3,7,8-tetrachlorodibenzop-dioxin exposure in primary rat astroglia: identification of biochemical and cellular targets. Neurotoxicol. 18, 515-524
  16. Martin D. M, Yee D., Carlson R. O., Feldman E. L. (1992). Gene expression of the insulin-like growth factors and their receptors in human neuroblastoma cell lines. Brain Res. Mol. Brain Res. 15, 241-246 https://doi.org/10.1016/0169-328X(92)90114-Q
  17. Schantz, S. L., Bowman, R. E. (1989). Learning in monkeys exposed perinatally to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Neurotoxicology and Teratol. 11, 13-19 https://doi.org/10.1016/0892-0362(89)90080-9
  18. Shertzer, H. G., Nebert, D. W., Puga, A., Ary, M., Sonntag, D., Dixon, K., Robinson, L. J., Cianciolo, E., Dalton, T.P. (1998) Dioxin causes a sustained oxidative stress response in the mouse. Biochemical and Biophysical Research Comm. 253, 44-48 https://doi.org/10.1006/bbrc.1998.9753
  19. Stohs, S. J. (1990). Oxidative stress induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Free Radical Biol Medicine, 9, 79-90
  20. Tannheimer, S. L., Barton, S. L., Ethier, S. P., Burchiel, S. W. (1997). Carcinogenic polycyclic aromatic hydrocarbons increase intracellular $Ca^{2+}$ and cell proliferation in primary human mammary epithelial cells. Carcinogenesis 18, 1177-1182 https://doi.org/10.1093/carcin/18.6.1177
  21. Tannheimer, S. L., Lauer, F. T., Lane, J., Burchiel, S. W. (1999). Factors influencing elevation of intracellular $Ca^{2+}$ in the MCF-10A human mammary epithelial cell line by carcinogenic polycyclic aromatic hydrocarbons. Mol. Carcinog. 25, 48-54 https://doi.org/10.1002/(SICI)1098-2744(199905)25:1<48::AID-MC6>3.0.CO;2-6
  22. Tannheimer, S. L., Ethier, S. P., Caldwell, K. K., Burchiel, S. W. (1998). Benzo[a]pyrene- and TCDD-induced alterations in tyrosine phosphorylation and insulin-like growth factor signaling pathways in the MCF-10A human mammary epithelial cell line. Carcinogenesis 19, 1291-1297 https://doi.org/10.1093/carcin/19.7.1291
  23. Tilson, H.A., Kodavanti, P. R. (1997). Neurochemical effects of polychlorinated biphenyls: an overview and identification of research needs. Neurotoxicol. 18, 727-743
  24. Tsukumo, S., Iwata, M., Tohyama, C., Nohara, K. (2002). Skewed differentiation of thymocytes toward CD8 T cells by 2,3,7,8-tetrachlorodibenzo-p-dioxin requires activation of the extracellular signal-related kinase pathway. Arch. Toxicol 76, 335-343 https://doi.org/10.1007/s00204-002-0343-9
  25. van de Loosdrecht, A. A., Nennie, E., Ossenkoppele, G. J., Beelen, R. H., Langenhuijsen, M. M. (1991). Cell mediated cytotoxicity against U 937 cells by human monocytes and macrophages in a modified colorimetric MTT assay. A methodological study. J Immunol Methods 141, 15-22 https://doi.org/10.1016/0022-1759(91)90205-T