DOI QR코드

DOI QR Code

Real-time Upstream Inflow Forecasting for Flood Management of Estuary Dam

담수호 홍수관리를 위한 상류 유입량 실시간 예측

  • Kang, Min-Goo (Korea Institute of Water and Environment, Korea Water Resources Corporation(KOWACO)) ;
  • Park, Seung-Woo (Department of Rural System Engineering, Seoul National University) ;
  • Kang, Moon-Seong (Department of Biosystems Engineering, Auburn University)
  • Published : 2005.12.01

Abstract

A hydrological grey model is developed to forecast short-term river runoff from the Naju watershed located at upstream of the Youngsan estuary dam in Korea. The runoff of the Naju watershed is measured in real time at the Naju streamflow gauge station, which is a key station for forecasting the upstream inflow and operating the gates of the estuary dam in flood period. The model's governing equation is formulated on the basis of the grey system theory. The model parameters are reparameterized in combination with the grey system parameters and estimated with the annealing-simplex method In conjunction with an objective function, HMLE. To forecast accurately runoff, the fifth order differential equation was adopted as the governing equation of the model in consideration of the statistic values between the observed and forecast runoff. In calibration, RMSE values between the observed and simulated runoff of two and six Hours ahead using the model range from 3.1 to 290.5 $m^{3}/s,\;R^2$ values range from 0.909 to 0.999. In verification, RMSE values range from 26.4 to 147.4 $m^{3}/s,\;R^2$ values range from 0.940 to 0.998, compared to the observed data. In forecasting runoff in real time, the relative error values with lead-time and river stage range from -23.4 to $14.3\%$ and increase as the lead time increases. The results in this study demonstrate that the proposed model can reasonably and efficiently forecast runoff for one to six Hours ahead.

본 연구에서는 영산호의 상류에 위치한 나주유역의 홍수시 유출량을 실시간으로 예측하기 위하여 Grey홍수 유출모형을 개발하였다. 나주유역의 유출량은 나주수위관측소에서 실시간으로 측정하고 있으며, 이곳은 영산호의 유입홍수량을 예측과 홍수관리를 위한 주관측소이다. 모형의 지배방정식은 Grey시스템 이론에 근거하여 구성되었으며, 모형의 매개변수는 Grey 시스템매개변수의 조합으로 구성하였다. 모형의 차수는 실측자료와 모의결과를 비교하여 다른 차수 보다 양호한 결과를 나타내는 5차로 하였다. 모형의 보정시 예측결과와 실측치간의 RMSE는 $3.1\~290.5m^{3}/sec$를 나타냈으며, $R^{2}$$0.909\~0.999$를 나타냈다. 모형의 검정시 예측결과와 실측치간의 RMSE는 $20.6\~147.4m^{3}/sec$를 나타냈으며, $R^{2}는\;0.940\~0.998$를 나타냈다. 매개변수가 추정된 모형을 이용하여 담수호의 유입량을 하천수위 상태에 따라 예측한 결과, 하천수위가 상승할 경우와 하강할 경우의 예측 홍수량은 예측시간이 증가할수록 커지는 경향을 나타냈다. 또한, 하천수위가 첨두에 가까운 시기의 홍수량은 예측시간에 관계없이 실측자료와 비슷한 결과를 나타냈다. 이와 같은 결과는 Grey 홍수유출모형을 홍수시 담수호 유입량을 실시간으로 정확하게 예측하는데 적용할 수 있음을 나타낸다.

Keywords

References

  1. 강민구, 박승우, 임상준, 김현준 (2002). 전역최적화 기법을 이용한 강우-유출모형의 매개변수 자동보정, 한국수자원학회 논문집, 제 35권, 제 5호, pp. 541-552 https://doi.org/10.3741/JKWRA.2002.35.5.541
  2. 김성원, 호세 살라스 (2000). 하천수위표 지점에서 신경망기법을 이용한 홍수위의 예측, 한국수자원학회논문집, 제 33권, 제 2호, pp. 247-262
  3. 심순보, 김만식 (1999). 유입량 예측을 위한 신경망 모형과 저류함수 모형의 비교연구, 대한토목학회 논문집, 제 19권, 제 II-1호, pp. 79-90
  4. 이재응, 정재욱, 윤세의 (2001). 영산강 유역의 홍수피해 분석, 2001년 대한토목학회 정기 학술발표회 논문집
  5. Campolo, M., Andreussi P., and Soldati A. (1999). River flood forecasting with a neural network model, Water Resour. Res., Vol.35, No. 4, pp. 1191-1197 https://doi.org/10.1029/1998WR900086
  6. Chun B. H. (2004). Evaluation of disaster risk of storms and measures to prevent them, International Symposium on Living with Risk: Dealing with Typhoon-related Disaster as part of Integrated Water Resources Management, pp. 10-23
  7. Deng, J. (1989). Introduction to grey system theory, J. Grey System. Vol. 1, No. 1, pp. 1-24
  8. Deng, J. (1982). Control problems of grey systems, Systems and Control Letters, Vol.5, pp. 1-24
  9. Hsu, L. C. (2003). Applying the grey prediction model to the global integrated circuit Industry, Technological Forecasting and Social Change, Vol. 70, pp. 563-574 https://doi.org/10.1016/S0040-1625(02)00195-6
  10. Imrie, C. E., Durucan S., and Korre A. (2000). River flow using artificial neural networks: Generalization beyond the calibration range, J. Hydrol., Vol. 233, pp. 138-153 https://doi.org/10.1016/S0022-1694(00)00228-6
  11. Kang, M. S. and Park S. W. (2003). Short-term flood forecasting using artificial neural networks, J. The Korea Society of Agricultural Engineers, No. 45, Vol. 2, pp. 45-57. (In Korean)
  12. Kim, G. S. and Lee J. S. (2002). Flash flood forecasting using remotely sensed information and neural networks part II: Model application, Water Eng. Res., Vol.3, No.2, pp. 123-134
  13. Laio F., Porporato A., Revelli R., and Ridolfi L. (2003). 'A comparison of nonlinear flood forecasting methods, Water Resour. Res., Vol. 39, No. 5, pp. 21 -24 https://doi.org/10.1029/2002WR001551
  14. Lee R. H. and Wang R. Y. (1998). Parameter estimation with colored noise effect for differential hydrological grey model, J. Hydrol., pp. 1-15 https://doi.org/10.1016/S0022-1694(98)00133-4
  15. Pan L. and Wu L. (1998). A hybrid global optimization method for inverse estimation of hydraulic parameters : Annealing-simplex method, Water Resour. Res., Vol. 34, No. 9, 2261-2269 https://doi.org/10.1029/98WR01672
  16. Yapo, P., Sorooshian S., and Gupta V. (1993). A Markov-chain flow model for forecasting, Water Resour. Res., Vol. 29, No. 7, pp. 2427-2436 https://doi.org/10.1029/93WR00494
  17. Yu, P. S., Chen C. J., and Chen S. J. (2000). Application of gray and fuzzy methods for rainfall forecasting, J. Hydrol. Eng., Vol. 5, No. 4, pp. 339-345 https://doi.org/10.1061/(ASCE)1084-0699(2000)5:4(339)
  18. Yu, P. S., Chen C. J., Chen S. J., and Lin S. C.(2001). Application of grey model toward runoff forecasting, J. The American Water Resources Association, Vol. 37, No. 1, pp. 151-166 https://doi.org/10.1111/j.1752-1688.2001.tb05482.x
  19. Xia J. (1989). Research and application of grey system theory to hydrology, J. Grey System, Vol. 1, pp. 43-52
  20. Zhang, B. and Govindaraju R. S. (2000). Prediction of watershed runoff using Bayesian concepts and modular neural networks, Water Resour. Res., Vol. 36, No. 3, pp. 753-762 https://doi.org/10.1029/1999WR900264

Cited by

  1. Gray Models for Real-Time Groundwater-Level Forecasting in Irrigated Paddy-Field Districts vol.142, pp.1, 2016, https://doi.org/10.1061/(ASCE)IR.1943-4774.0000940