The Synchronization Method for Mutual Cooperation Control of Chaotic Mobile Robot
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ABSTRACT

In this paper, we propose that the synchronization method for mutual cooperative control in the chaotic mobile robot. In order
to achieve the synchronization for mutual cooperative control in the chaotic mobile robot, we apply coupled synchronization
technique and driven synchronization technique in the chaotic mobile robot without obstacle and with obstacle.
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I . Introduction

Chaos theory has been drawing a great deal of
attention in the scientific community for almost two
decades. Remarkable research efforts have been spent in
recent years, trying to export concepts from Physics and
Mathematics into the real world engineering applications.
Applications of chaos are being actively studied in such
areas as chaos control [1-2], chaos synchronization and
secure/crypto  communication  [3-7], Chemistry [8],
Biology [9], and robots and their related themes [10].

Recently, Nakamura, Y. et al [10] proposed a chaotic
mobile robot where a mobile robot is equipped with a
controller that ensures chaotic motion and the dynamics
of the mobile robot are represented by an Arnold
equation. They applied obstacles in the chaotic trajectory,
but they did not mentioned obstacle avoidance methods
with mutual cooperative control.

In this paper, we propose the synchronization method
for mutual cooperation control of a chaotic mobile robots
that have unstable limit cycles in a chaos trajectory
surface with Lorenz equation, n-double scroll equation.
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We assume that all obstacles in the chaotic trajectory
surface have a Van der Pol equation with an unstable
limit cycle. When chaos robots meet obstacles among
their arbitrary wandering in the chaos trajectory, which is
derived using chaos circuit equations such as the Lorenz
equation or hyper chaos equation, the obstacles reflect the
chaos robots. In order to achieve the synchronization for
mutual cooperative control in the chaotic mobile robot,
we apply coupled synchronization technique and driven
synchronization technique in the chaotic mobile robot
without obstacle and with obstacle.

Computer simulations also show multiple obstacles can
be avoided by using mutual cooperative control with an
Lorenz equation or hyper chaos equation.

II. Chaotic Mobile Robot

2.1. Mobile Robot
As the mathematical model of mobile robots, we
assume a two- wheeled mobile robot as shown in Fig. 1.

y1

Fig. 1 Two-wheeled mobile robot

Let the linear velocity of the robot V[m/s] and
angular velocity [rad)s] be the input to the system. The
state equation of the four-wheeled mobile robot is written
as follows:

Z1] (cos60 v
¥ = (sine 0)(111) m
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where (x,y) is the position of the robot and @ is the
angle of the robot.

2.2 Chaos equations
In order to generate chaotic motions for the mobile
robot, we apply some chaotic equations such as an
Lorenz equation and hyper-chaos equation.
1) Lorenz equation
Lorenz equation describes the

famous  chaotic

phenomenon. We define the Lorenz eqﬁation as follows:
z=o(y—=z) )
Yy=Yr—y—zx2
z=xzy—bz

where o =10,v=28,b=8/3.

From equation (2), we can get time series and chaotic
attractor as shown in Fig. 2 and Fig 3.

Tirme Series : y

Time Series : z

Fig. 2 Time series of Lorenz equation
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Fig. 3 Chaotic attractor of Lorenz equation

2) Hyper-chaos equation
Hyper-chaos equation is one of the simplest physical

models that have been widely

investigated by
mathematical, numerical and experimental methods for
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complex chaotic dynamic. We can easily make
hyper-chaotic equation by using some of connected
N-double scroll. We can derive the state equation of
N-double scroll equation as followings.

. g
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In order to make a hyper-chaos, we have compose to
1 dimensional CNN(Cellular Neural Network) which are
identical two N-double scroll circuits and then we have
to connected each cell by using unidirectional coupling or
diffusive coupling. In this paper, we used to diffusive
coupling method. We represent the state equation of
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where, L is number of cell.

From equation (3), (4) and, (5), we can get a chaotic
attractor as shown in Fig. 4.

[S103 ]

Fig. 4 Chaotic attractors of hyper—-chaos equation ‘
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2.3 Embedding of Chaos circuit in the Robot
In order to embed the chaos equation into the mobile
robot, we define and use an Lorenz equation or hyper
chaos equation as follows.
1) Lorenz equation
Combination of equation (1) and (2), we define and
use the following state variables:

Iy

oly—z)

Ty e —y—xz)

z, = Ty—bz (6)
VCOS Ty
vsinT,

Eq. (6) is including Lorenz equation. The behavior of
Lorenz equation is chaos. We can get chaotic mobile
Tobot trajectory.

2) Hyper-chaos equation
Combination of equation (1) and (4) or (5), we define

and use the following state variables (7) or (8)

T (aly? ~h(z )4+ D, (20 —229) 20 1Y)
Ty ey hy(j) 4+,
2;3 = —ﬂy(j) (7)
T VCOST,
vsinz,
T aly® —h (D]
By| |29 =y 420 4 D (207 = 2200 4 4071
Tr‘ = — ﬁy(j) ®)
T VeosT,
Yy vsina,

Using equation (7) and (8), we obtain the embedding
chaos robot trajectories with Hyper-chaos equation

II. Chaotic Mobile Robot with VDP( Van
der Pol) Obstacle and Mirror Mapping

3.1. VDP obstacle

In this section, we will discuss the mobile robot’s
avoidance of Van der Pol(VDP) equation obstacles. We

assume the obstacle has a VDP equation with an unstable

the mobile robot
can not move close to the obstacle and the obstacle is

limit cycle, because in this condition,

avoided.
In order to represent an obstacle of the mobile robot,
we employ the VDP, which is written as follows:

)

From equation (9), we can get the following limit
cycle as shown in Fig. 5.

Fig. 5 Limit cycle of VDP

3.2 Mirror mapping

Equations (6) - (8) assume that the mobile robot
moves in a smooth state space without boundaries.
However, real robots move in space with boundaries like
walls or surfaces of targets. To avoid a boundary or
obstacle, we consider mirror mapping when the robots
approach walls or obstacles using Eq. (10) and (11).
Whenever the robots approach a wall or obstacle, we
calculate the robots’ new position by using Eq. (10) or
(1.

__[cosf  sind
- (sin@ — oS 9) (10)
1 1—m? 2m
A=—"— 11
1+m( 2m —1+m2) (1

We can use equation (10) when the slope is infinity,
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such as ©=¢(), and use equation (11) when the slope is
not infinity.

3.3 Magnitude of Distracting force from the obstacle
We consider the magnitude of distracting force from
the obstacle as follows:

De 0.325 )

(02D, +1)e*®?% Y

where D, is the distance between each -effective
obstacle and the UAV.
We can also calculate the VDP obstacle direction

vector as follows:

To™Y

a|_
[5}1}_ [0'5(1“%_3”)2(?}0'— 13

y)—wo—w)b

where ( X, yO) are the coordinates of the center point
of each obstacle. Thenwe can calculate the magnitude of
the VDP direction vector (L), the magnitude of the
moving vector of the virtual UAV (I) and the enlarged
coordinates (I/2L) of the magnitude of the virtual UAV in
VDP( Xp V) 3 follows:

L=:/(z?

v+ﬁdp
\/(z +42) (14)
@l _nl
LTy BT

Finally, we can get the Total Distraction Vector (TDV)
as shown by the following equation.

zn] D —, De—
k 0 DO
'TL
3 D (15)
n
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Using equations (10)-(15), we can calculate the
avoidance ‘method of the obstacle in the
hyper-chaos trajectories with one or more VDP obstacles.

Lorenz and

IV. Mutual cooperative control by using
synchronization methods

To achieve mutual cooperative control in the mobile
robot, we applied the chaotic synchronization technique
from the several mobile robot trajectories. Firstly, we
applied coupled synchronization method and then we also
synchronization method for mutual
cooperative control between the several robots.

applied driven

3.1 Coupled synchronization method

In order to accomplish mutual cooperative control in
the several chaos mobile robots, we applied a coupled
synchronization method proposed by Cuomo [11] in the
Lorenz chaos mobile robots .

To applied coupled synchronization method in the
Lorenz circuit, transmitter-receive state equations are

following:

Transmitter state equation

x=0(y—x)+ k(x—y)
y—xx y— X2
z=xy— bz

(16)

Receiver state equation
x=0(y—x)+£(y—x)
Y=¥x—y—x2
z=xy— bz

an

In order to accomplish synchronization of the Eq. (16),
(17), we need to find stable coupled-register R, value

between the transmitter and the receiver.

32 Coupled mutual cooperative control in the
Hypers chaos robot by using coupled synchronization
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To accomplish synchronization of the two chaos robot
embedding hyper chaos circuit, first we formed each state
equation for Eq. (18), (19). Then found coupled
coefficient k and k* by using stability criteria. After that,
we applied k and k’ within stable area to perform
computer simulation.

Main chaos robot’s state equation
élz aly? - h(eW+ D (z9"V— 2294 z0+0)) 1 g
z=zP -y 4 S0

Ty~ BT,
T=1vcosT,

1}= vsinz,
(18)
Sub chaos robot’s state equation
il: aly¥ — h(z¥]+ Dz(zu—n_ 229 4+ 2UHDY) 4 g
Ty= zU)— y(j>+ z(j)
Tg=— iz,
T=1UCOSTy
:l.;= vs8inT,
(19)

3.3 Driven mutual cooperative control in the hyper
chaos robot by using driven synchronization

To accomplish synchronization of the two chaos robot
embedding hyper chaos circuit, first we formed each state
equation for Eq. (13), (14). Then found driven coefficient
k and k’ by using stability criteria. After that, we applied
k and K

sirnulation.

within stable area to perform computer

Main chaos robot’s state equation

1;1: a{y(j)‘ h.(zm)

iZ: 29— y\j)+ ONS D”(x‘j_”* oz W g U+ 4
L= 5y(j)

r= 'UC()SIS

',' = PSinT,

13

Sub chaos robot’s state equation

z.]= a[yo)— Bi{zP)+ k

z;2= 9~ y(j) + 29 D”(z(r D gz 4 g0 4 g
T3=— ﬂyw

= COS.’I)S

Y= Using,

(14)

The Fig. 6 and 7 showing sSynchronization of two
hyper chaos robot after using Eq.(13) and (14). Fig. 6
is showing the result of synchronization at fixed obstacle.

(b) The result of synchronization

Fig. 6 The result of synchronization in the Lorenz
robot with fixed obstacles by using coupled mutual
cooperative control

The Fig. 7 showing synchronization of two Lorenz
chaos robot after using Eq.(13) and (14).
showing the result of the synchronization after applying
hidden obstacle, VDP.

Fig. 7 is
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(b) The result of synchronization

Fig. 7 The result of synchronization in the hyper
chaos robot with hidden obstacles using driven mutual
cooperative control

V. Conclusion

In this paper, we proposed a chaotic robots, which
employs a robots with Lorenz or hyper chaos equation
trajectories, and also proposed a robot synchromization
methods in which coupled-synchronization and driven
synchronization.

We designed chaotic robot trajectories such that the
total dynamics of the robots was characterized by a
Lotenz or hyper chaos equation and also designed the
chaotic robot trajectories to include an obstacle avoidance
method. As a result, we realized that the result of
synchronization is generalized synchronization.
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