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BAYESIAN INFERENCE FOR THE POWER LAW
PROCESS WITH THE POWER PRIOR

Hyunsoo Kim! SANGA CHor? AND SEONG W. Kim?

ABSTRACT

Inference on current data could be more reliable if there exist similar
data based on previous studies. Ibrahim and Chen (2000) utilize these data
to characterize the power prior. The power prior is constructed by raising
the likelihood function of the historical data to the power ag, where 0 <
ag < 1. The power prior is a useful informative prior in Bayesian inference.
However, for model selection or model comparison problems, the propriety
of the power prior is one of the critical issues. In this paper, we suggest two
joint power priors for the power law process and show that they are proper
under some conditions. We demonstrate our results with a real dataset and
some simulated datasets.

AMS 2000 subject classifications. Primary 62G20; Secondary 62F15.
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1. INTRODUCTION

When we perform a Bayesian inference, prior elicitation plays a very impor-
tant role. In principle, priors formally represent available information but in
practice noninformative and improper priors are often used. Nevertheless, they
cannot be used in some situations such as model selection or hypothesis testing.
In these cases a proper prior on the parameters is needed making Bayesian in-
ference plausible. Furthermore, noninformative priors may not reflect real prior
information that one may need for a specific situation. Thus, when we have real
prior information, it is possible to make posterior inference quite accurate. This
often occurs when the current study is similar to the previous study in measuring
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the response and covariates such as clinical trials, carcinogenicity studies, and
other problems including reliability and survival data.

The data arising from previous studies are referred as ‘historical data’. One
method of constructing an informative prior based on the historical data is the
power prior of Ibrahim and Chen (2000). Suppose that the historical data from
a previous study is available for the current study. The power prior is defined by
the likelihood function based on the historical data, raised to a power ag, where ag
(0 < ap < 1) is a scalar parameter that controls the influence of the historical data
on the current study. This idea has been discussed by several authors. Zellner
(1988) was one of these authors, who proposed the idea of raising a likelihood to
a power in the context of information and optimal processing rules.

The power prior is a useful informative prior for Bayesian inference such
as model selection and model comparison because it inherently automates the
informative prior specification for all possible models in the model space. Chen,
Ibrahim, Shao and Weiss (1999) utilize the power prior for model selection in
generalized linear mixed models. Ibrahim, Chen and Ryan (2000) use the power
prior to analyze time series data.

Data truncation is commonly occurred in repairable systems, among which
the power law process (PLP) is perhaps the most popular model. However,
there are two sampling schemes in repairable systems, namely time truncation
and failure truncation. In the former, the observation of the failure times is
restricted to a pre-fixed interval [0, t], and the failure times during this interval
are recorded. On the other hand, in failure truncation, a pre-determined number,
n, of successive failure times of the process are obtained. In this article we are
only concerned with failure truncation. In particular, we use the power prior to
estimate existing parameters in the PLP including the shape parameter, which
determines the pattern of failure times.

Consider a nonhomogeneous Poisson processes (NHPP). A random variable
of special interest is N(t), the number of failures in the time interval (0,¢]. The
intensity function of a counting process {N(t),t > 0} is defined as

W(e) = M'(t) = SEIN(),

where M (t) denotes the mean number of failures in the interval (0, t], often called
the mean value function. Let X = (Xi,---,X,) be the first n failure times of
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the NHPP with observed values 1 < --- < z,,. The joint density of X is then

n

L(X10) = [ v(x:) - exp{—M(zn)}. (1.1)
i=1
Consider the PLP among nonhomogeneous Poisson processes. This model is
motivated by Duane (1964) in order to fit the data in electricity-producing plants.
Crow (1974) generalized the model with the following intensity function,

u(t):gtﬁ‘l, n>0, 8>0 t>0,
n

where (3 is the shape parameter and 7 is the scale parameter. From (1.1) the
likelihood function of the failure times is

L(B,nlx) = (g)n<ﬁxi)ﬁ—l exp{-%ﬁ}, O0<z < - < Zn. (1.2)
i=1

We note that the system is deteriorating when 3 > 1, and the system is improving
over time when 8 < 1. Further, the process reduces to a homogeneous Poisson
process when 3 = 1. Thus, the inference on the shape parameter is of interest.

There are several articles concerning Bayesian inference for the PLP. Kyparisis
and Singpurwalla (1985) considered a Bayesian approach for making inference
about the number of failures in a future time interval modelled by the PLP.
Guida, Calabria and Pulcini (1989) present Bayesian procedures for the analysis
of failure-truncated data from the PLP. Bar-Lev, Lavi and Reiser (1992) develop
posterior distributions for the expected number of failures in the PLP. Lingham
and Sivaganesan (1997) conducted a test for the shape parameter of the PLP.
Kim and Sun (2000) considered a multiple test using an encompassing model.
Kim, Kim and Kim (2003) dealt with model selection problems for the PLP.

The rest of this article is organized as follows. In Section 2, we overview the
power prior in conjunction with the power law process. In Section 3, we present
the proposed model and show the propriety of the joint power prior distributions.
In Section 4, we analyze a real dataset and conduct a simulation study. We close
the article with a brief discussion in Section 5.

2. THE POWER PRIOR

We consider the power prior of the PLP. Let x = (x1,...,%5) be the failure
time for the PLP from the current study. Suppose we have historical data x¢ =
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(To1,-..,%one)- Let L(B,m | x) denote the likelihood function for the current
study, which is given by (1.2). Let mo(8,7 | -) denote the prior distribution for
(8,m), which is called the initial prior. This initial prior is assumed before the
historical data x¢ are observed. From Ibrahim and Chen (2000) we define the
joint power prior distribution of (3,7, ag) for the current study as

m(B,m,a0 | o) o [L(B,7, | x0)]™m0(B,71 | co)m(ao | 7o), (2.1)

where cg is a specified hyperparameter for the initial prior and ~y is a specified
hyperparameter for the prior distribution of ag. The parameter ¢y controls the
impact of the initial prior mo(3,n | ¢y), and the parameter ag is a precision
parameter. The parameter ag controls heaviness of the tails of the prior for
(8,m). As ap becomes smaller, the tails of (2.1) become heavier. Such control may
be important when there is heterogeneity between the previous and the current
study or the sample sizes of two studies are quite different. It is reasonable
that the range of ag is restricted to be between 0 and 1, and thus it is natural
that the distribution for n(ap | 7o) is chosen to be a beta distribution. The
beta prior for ay appears to be the most natural prior to use and leads to the
most natural elicitation scheme. The prior in (2.1) does not have a closed form
in general. However a desirable feature of (1.2) is that it creates heavier tails
for the marginal prior of (8,7) than we assume aq is fixed. Thus (1.2) is more
flexible in weighting the historical data. When we fix ap = 1, (2.1) can be the
posterior distribution of (3,7,a¢) from the historical data. When ag = 0, the
prior distribution does not depend on the historical data and (2.1) can be a usual
prior.

The joint power prior in (2.1) can be generalized when multiple historical
datasets are available. Suppose that there are N historical datasets, and let
Xok = (Tokys- " ’mOknok) be the historical data based on the kth study, k& =
1,..., N. In this case, it is desirable to define a precision parameter ag; for each
historical study, and take the distribution for agy’s to be i.i.d. beta distribution
with parameters vo = (do, o),k = 1,..., N. For ag = (ag1,.--,a0n), the joint
power prior in (2.1) can be generalized as

N
W(ﬁa 7,20 | ka) & H[L(ﬂ’ m, | ka)]aOkﬂ-O(ﬁan | CO)TF(aO | 70) (22)
k=1
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3. PROPRIETY OF THE POWER PRIOR

A proper prior distribution is essential in any informative Bayesian inference.
Especially, it plays a crucial role in model selection or model comparison to
compute Bayes factors and posterior probabilities. Chen, Ibrahim, and Shao
(2000) found conditions for the propriety of the joint power prior distribution in
the generalized linear models. In this paper, we derive them for the PLP.

Note that the likelihood function is given by (1.2). For the parameter ag we
assume a beta prior with vy = (dg, Ap). If we impose two different initial priors

for (3,7), then we come up with different results. They are described in Theorem
3.1 and Theorem 3.2.

THEOREM 3.1. Suppose that the initial prior distribution for (8,n) is Jef-
freys’s prior, and ag has a beta distribution with hyperparameters (8, o). If
do > 2, then the joint power prior (2.1) for (3,7m,a0) is proper.

PRrROOF. Note that Jeffreys’s prior for (8, 7) is 1/(8n). The joint power prior
for (8,7, a0) is then

@) o () ([Tom) " exnf =220} Jr 0 - a0

n

Let
h(ag) = a@* (1 — ag)™ L.

Then we have

/ / / 7(8,m, ao|xo)dndBday

/ / / ﬁz(h)ﬂ lexp{ xozoﬁ}]ao‘ﬂl—n h(ao)dndBdag
= /0 (Hﬂﬁm)daoh(ao) ag~ "™ T'(agno) /O 5”0"0‘1(Hm)aogxgn“o"”‘)ﬁdﬂdao
_ /0 ' (H in) " h(ao) ag=®m [%ﬂ] 2

X [ao (no log Zong — log(H in))] _aonodao. (3.1)
1
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Since

F(no + 1)

b

F(aono + 1) <

F(aono) =
apno ap

(3.1) is less than or equal to

1 N —a
I‘\Q(no + 1)/ (H in) Oh(ao) aO—QGO(nO‘Fl)
0y

X (no log zon, — log(H 3301)) “aonodao
i

< F2(n0 +1) exp{i@} /01 h(ao)aa2 (H acm’) o
i
—agng

X (no log zon, — log(H in)) dag
i

<K / )‘0 Ydag < o0,
where
K =T?(ng+1) exp{2n0/e}(1 + (H in)_l)
i
x [1 + (no log zon, — log(H in)) _no] .
i
This completes the proof. ; =

We need to define a truncated beta distribution which will be used to prove
Theorem 3.2 below.

DEFINITION 3.1. A truncated beta random variable X has the following prob-
ability density function:

f@)xz® M1 -2y L 0<a<z<b<l.

We call a and b the lower bound and the upper bound respectively. And o and (3
are hyperparameters for a conventional beta distribution.

THEOREM 3.2. Suppose that the initial prior distribution on (3,n) is a uni-
form prior, and the prior distribution for ag is a truncated beta distribution with
hyperparameters (8o, Xo). If 8o > 1, then the joint power prior for (B,m,a0) is
proper.
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PrOOF. The joint power prior for (8,7, a0) is

(@) o ()" ([Tm)” exn{- 225 e,

where qg is left truncated with lower bound

Cxy = maz{log zo,,/(nolog zo,, — log | [ 2ei), 1/(no — 1)},

i

provided log o, /(no log o,, — log [T, zo;) < 1. Then we have

/ //W(ﬂ, n, ag|Xo)dndBdag
/c / / ﬁ xm)ﬂ 1 eXp{ x0206 Haoh(ao)d’ndﬂdao
(X)
= /C h(ao)T(agng — 1) /O oo (H in)ao(ﬂ—l) <a0x0n06) 1—agno dBdag
x) .

= /1 h{ao)T'(apng — 1)T'(agno + 1)a. gl @m0 <H 3301>

Cix)
(aomo+1)
X { (no log zon, — log H a:()i) ap — log Ton, } dag. (3.2)
i
Since
F(aono + 1) < F(TLO + 1)

Flomo = 1) = Gne = Diaom) = @

b

(3.2) is less than or equal to

2 ! —(agno+1)
r“( no+1) / h(ao) (me) ao

Cixy

—(aono+1)
X { (no log xon, — log H 1701’) ag — log Ton, } day. (3.3)
i

Since
ao—aono < eno/e ’

(3.3) is less than or equal to

1
K h(ao)ag *dao,
Cix)
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where K = I'?(ng + 1)e"°/eC(X)_2"°(1 + (IT; z0:) ™). This completes the proof.
(]

REMARK 3.1. The condition on &y in Theorem 1 is useful for choosing the
hyperparameters (8o, Ao) in (2.1).

When multiple historical data sets are available the power prior in (2.1) can
be generalized as (2.2). The conditions for the propriety in (2.2) are similar to
those in (2.1).

THEOREM 3.3. Suppose that the initial prior distribution for (8,n) is Jef-
freys’s prior, and ag has a iid beta distribution with hyperparameters (8o, o) for
each of the historical data Do, k = 1,...,M. If 69 > 2, then the joint prior
distribution ©(8,n,a9 | Do1,...,Don) given in (2.2) is proper.

PROOF. Similar to Theorem 3.1, (2.2) is represented by

/01]M/ / nmﬂ(ﬁxoz) exp{_%;% }]aok

1
xafy (1= ag0)"] x - dndBdao.  (33)

Integrating out 7, (3.3) reduces to

/ / on”/ aOk(ﬂ 1) (50—1(1_a k))\o l]ﬂzkaOknOk -1
[0,1]M
2.k G0RTOK
(E GokTV0k) (E a0k$gn0k) * dfdag. (3.4)
k k

Since

M 8 - Zk Gok ok
(Z akaonOk) <
k=1

(3.4) is less than or equal to

exp Zn()k/e /[01]M/ I;[ HiUm amcag(’)c 1(1-a0k))‘°_1]

xI‘(Z aokNok) 32k 0kMok—1 exp{ -B Z aok Z log % }dﬂdao. (3.5)
k k i

=

—G0k N0k Ok
(agkmgn%) and ag, "0k < exp( . ),
k

Il

1
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Integrating out £, (3.5) reduces to

eS| T[] ™ (o)

Tog

X ag(;c 1 - aOk)AO"l}P (Z apknok )dag. (3.6)
k

By the inequality

0 aokor) = P paoknor +1) _ TO g nox +1)
OOk Yokeoknok [k aok

(3.6) is less than or equal to

o2 X e 0 [T ()™
k k=1 Y0 Ti=1

X (Z log x_gré%&)—aokWOk agh ™ (1 — agp)™ ™ da()k}- (3.7

. 7

1
Since

—aok
(Hﬂvoi) ° <1+ HCBOi
i i

and

(Z log Longy ) —QokMok <14 (Z log x;nok )—nok’
- : - 07
(2 (2

Toi

(3.7) is less than or equal to

K H{/ aOk 1 —aOk))‘O -1 da()k} < 00,

where
K = exp{QZ %)IE}IQ(; nox + 1) kl;[ [(1 + l:[xm)
oo (Ss()) ™).

This completes the proof. U
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TABLE 4.1 Posterior estimates of parameters for the power law process. The numbers in paren-
theses are standard errors of the estimates.

(do, Ao) {Hag)Tan) E(ao|D, Do) (SE.) Para. Post.Mean (SE.)
(5,5)  (0.500,0.151) 0.011 (0.005) B 0.699 (0.068)
15.365 (13.193)
0.700 (0.069)
15.179 (12.731)
0.700 (0.066)
15.077 (12.467)
0.701 (0.066)
14.879 (11.900)
0.704 (0.062)
13.582 (10.916)

(20,20) (0.500,0.078)  0.041 (0.009)
(30,30) (0.500,0.064)  0.060 (0.011)
(50,1)  (0.980,0.019)  0.106 (0.015)

(100,1)  (0.990, 0.010) 0.212 (0.021)

S LI DI W I

REMARK 3.2. Similar extension of Theorem 3.2 can be also obtained. In
this case the condition on the hyperparameters, (09, Ao) for the propriety is (6o +
Xo0)/00 < Ny. It is weaker than that for a single dataset. This implies that more
information is incorporated into the analysis when multiple historical datasets are
available.

4. NUMERICAL EXAMPLES

EXAMPLE 4.1. We analyze the data of Maguire, Pearson and Wynn (1952)
on the intervals in days between coal-mining disasters. The data are recorded
between 6 December 1875 and 29 May 1951. However, according to Jarrett
(1979) it turned out that more data are available starting 15 March 1851. Thus,
we regard the data before 1875 as the historical data with the size of 80, and
use the rest of the data as the current data with the size of 107. These data
have been extensively used to fit several models including nonhomogeneous Pois-
son processes (cf. Barnard (1953); Cox and Lewis (1966)). First, we compute
the MLEs for each sub-dataset. The MLE of (3,n) for the historical data is
(Bhis, finis) = (1.039,16.317). On the other hand, the MLE for the current data is
(Beur, fiewr) = (0.699, 11.910). It seems that the frequency of failures is an increas-
ing function based on the current data. However, the historical data behave time
independent in terms of the MLE ;5. Second, we compute the posterior means
of the parameters (ag, 3,7) with the joint power prior in (3.1), which requires a
two-dimensional numerical integration. This can be done using trapezoidal rules.



THE PLP WITH THE POWER PRIOR

341

TABLE 4.2 Simulation results for the power law process with the same 8s. The numbers in
parentheses are standard errors of the estimates.

8= (0.5,0.5)
(60, 20) (BagsCag) E(ao|D,Dg) Para. Post. Mean
(10,10) _ (0.500,0.109) 0633 (0.105) 8  0.512 (0.062)
n  0.108 (0.021)
(20,20)  (0.500,0.078) 0.585 (0.065) @  0.514 (0.071)
n 0.109 (0.026)
(30,30)  (0.500,0.064) 0.560 (0.054) J¢; 0.517 (0.069)
n  0.109 (0.025)
(50,10)  (0.833,0.048) 0.862 (0.020) Jé] 0.515 (0.069)
n 0.108 (0.026)
(100,10)  (0.909,0.027) 0.919 (0.008) B  0.505 (0.066)
n  0.105 (0.024)
8 =(2.0,2.0)
{(d0, Aa) (BagsCap) E(ao|D,Dg) Para. Post. Mean
(10,10)  (0.500,0.109) 0.862 (0.007) B  2.086 (0.268)
n  0.108 (0.025)
(20,20)  (0.500,0.078) 0.768 (0.009) B 2.081 (0.270)
n  0.109 (0.023)
(30,30)  (0.500,0.064) 0.708 (0.008) B  2.073 (0.264)
7 0.111 (0.025)
(50,10)  (0.833,0.048) 0.913 (0.002) B8 2.065 (0.299)
n 0.108 (0.026)
(100,10)  (0.909,0.027) 0.940 (0.001) B  2.112 (0.290)
n 0.112 (0.024)

Just as in Ibrahim and Chen (2000), we use 5 different choices of hyperparameters
(80, Ao) of the beta prior distribution. Numerical results are reported in Table 4.1
We see that as the posteribr mean of ag increases, so does the posterior mean of
B. This is congruent with what we expect from the data. Moreover, the change is
not so severe. This implies that the posterior mean of 3 is quite robust in terms
of change of the hyperparameters.

EXAMPLE 4.2. We perform a simulation study. We fix n = 0.1 and use
the same sample sizes 30 for both historical and current data. We compute
the posterior means for various hyperparameters based on 200 replications. The
estimates of parameters are reported in Table 4.2 and Table 4.3 In Table 4.2, we
set the same values of 3 for the historical and the current data. In Table 4.3, we
give the different values of 3 for two datasets. When the data are simulated with
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TABLE 4.3 Simulation results for the power law process with different 3s. The numbers in
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parentheses are standard errors of the estimates.

8 = (0.5,2.0)
(60, Ao) (MagsTag) E(ao|D, Do) Para. Post. Mean
(10,10)  (0.500,0.109) 0.559 (0.149) B 0.701 (0.079)
7 0.086 (0.009)
(20,20) - (0.500,0.078) 0.532 (0.076) B 0.701 (0.096)
n 0.087 (0.009)
(30,30)  (0.500,0.064) 0.522 (0.052) B8 0.704 (0.088)
n 0.087 (0.009)
(50,10)  (0.833,0.048) 0.855 (0.023) B 0.663 (0.087)
i 0.090 (0.011)
(100,10)  (0.909,0.027) 0.917 (0.008) B 0.635 (0.078)
n 0.089 (0.012)
8 = (2.0,0.5)
(d0, Mo) (thag+Tap) E(ao|D, Do) Para. Post. Mean
(10,10)  (0.500,0.109) 0.809 (0.015) B 0.631 (0.085)
n 0.093 (0.015)
(20,20)  (0.500,0.078) 0.704 (0.015) B 0.605 (0.078)
n 0.094 (0.016)
(30,30)  (0.500,0.064) 0.648 (0.013) B8 0.602 (0.081)
n 0.095 (0.016)
(50,10)  (0.833,0.048) 0.896 (0.004) B8 0.627 (0.084)
7 0.092 (0.014)
(100,10)  (0.909,0.027) 0.932 (0.002) J¢] 0.628 (0.085)
n 0.095 (0.014)

the same (s, the posterior means of 3 are fairly stable regardless of the posterior
means of ag. Further, the estimates of 8 and 7 are quite close to corresponding
true values. Based on the results in Table 4.3, it is consistent in the sense that the
posterior mean of 3 shrinks toward the value of historical data as the posterior
mean of ag increases. Even though we do not report several results for different
sample sizes, similar results are obtained. That is, the sample size of the current
data is large compared to the historical data, the impact of ag on [ is not so big.

5. CONCLUDING REMARKS

In Bayesian analysis it is practical and desirable to use a power prior when
historical data are available. It may be useful in many applications including
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model selection, hypothesis testing, and clinical trials. It also seems to be useful
in making inference for truncated failure data. We proposed two different joint
power priors in the power law process. We have showed that these power priors
are proper under mild conditions. Our computational results turned out to be
fairly consistent and robust both for real data and simulated datasets.
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