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A SKEWED GENERALIZED t DISTRIBUTION
SARALEES NADARAJAH!

ABSTRACT

Skewed ¢ distributions have attracted significant attention in the last few
vears. In this paper, a generalization — referred to as the skewed generalized
t distribution — with the pdf f(z) = 2¢(z)G(Az) is introduced, where g(-)
and G(-) are taken, respectively, to be the pdf and the cdf of the generalized
t distribution due to McDonald and Newey (1984, 1988). Several particular
cases of this distribution are identified and various representations for its

moments derived. An application is provided to rainfall data from Orlando,
Florida.

AMS 2000 subject classifications. Primary 33C90; Secondary 62E99.
Keywords. Generalized t distribution, rainfall modeling, skewed distributions.

1. INTRODUCTION

Skewed t distributions — both univariate and multivariate — have attracted sig-
nificant attention in the last few years. Most notable are the work by Branco and
Dey (2001), Gupta et al (2002), and Gupta (2003). In this paper, we introduce
a generalization of skewed ¢ distributions as follows. Consider the generalized ¢
distribution with the probability density function (pdf) specified by

KD (h) 121\
9@ = ST AR T (h = 1/R) {H (T) } (L)

for —oo <z <00, A >0,k >0, h >0and h > 1/k. This distribution was
used by for McDonald and Newey for partially adaptive estimation of regression
models. It has been followed up more recently by Theodossiou (1998), Arslan
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and Genc (2003) and Kim (2005). The corresponding cumulative distribution
function (cdf) can be expressed as:

1 1 1
it a2l = h-= i >
L S (5h-=)],ifz<0
2 I1—{1+(—§)’°} ' (k’h k)] BE=D
where I(a,b) denotes the incomplete beta function ratio defined by
' 1 T a1 b-1
I.(a,b) = —— 41 — w)’ " dw. 1.3
@) = gy | v v (13)

Following the usual definition of skew symmetric distributions (see, for exam-
ple, Gupta et al. (2002)), we define a random variable X to have the skewed
generalized t distribution if its pdf is given by

f(z) = 29(2)G(ya), - (14

where —00 < z < oo. We assume without loss of generality that v > 0 in
(1.4) since the corresponding properties for v < 0 can be obtained using the fact
G(yz) =1 — G(—~vz). It follows from (1.1), (1.2) and (1.4) that the pdf of X is

( z —h
2,\11(1/_1]:)1112}?}» —1/k) {1 + (X)k}
1

1

x |1 +I1—{1+(1ﬁ)’°}_1 (E,h- k‘) J ifz >0,
“kD(h) { ( f) }

20T (1/k)T (h— 1/k) A

1 1
U R N ES (&%)
When v = 0, (1.5) reduces to the generalized t pdf (1.1). Figures 1.1 and 1.2
below illustrate the shape of the pdf (1.5) for a range of values of v, h and k.
The effect of the parameters v, h and k is evident.

The generalized ¢ distribution given by (1.1) has major applications in the

sciences. The main feature of the skewed generalized ¢ distribution in (1.5) is
that a new parameter \ is introduced to control skewness and kurtosis. Thus,

(1.5) allows for a greater degree of flexibility and one can expect this to be useful
in many more practical situations.

(1.5)

,if x <0.
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FIGURE 1.1 The skewed generalized t pdf (1.5) for v =0,1,2,5,10, A =1 and (a): (h, k) =
(2,1); (&): (h,k) =(2,2); (¢): (R, k) = (2,5); and, (d): (h, k) = (2,20).

Various skewed distributions can be obtained from (1.4) by taking g¢(-) and
G(-) to belong to standard parametric families. The skewed normal distribution
with g(-) in (1.4) taken to be standard normal pdf was introduced in the seminal
paper by Azzalini (1985). This distribution has been studied extensively by
several authors. Henze (1986), Liseo and Loperfido (2003) and Gupta et al (2004)
provided various characterizations and representations of this distribution. Gupta
and Chen (2001) and Monti (2003) considered goodness—of-fit and estimation
issues. Arellano-Valle et al (2004) and Gupta and Gupta (2004) developed certain
generalizations of the skewed normal distribution. Pewsey (2000) developed the
wrapped skewed normal distribution for circular data. Azzalini and Chiogna
(2004) considered stress—strength modeling using the skewed normal distribution.

Among other skewed distributions arising from (1.4), see Arnold and Beaver
(2000) for skewed Cauchy, Kozubowski and Panorska (2004) and Aryal and
Nadarajah (2005) for skewed Laplace, and Wahed and Ali (2001) for skewed
logistic. See also Gupta et al (2002).

It should be noted that original skewed generalized ¢ distribution due to Theo-
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FIGURE 1.2 The skewed generalized t pdf (1.5) for v=0,1,2,5,10, A =1 and (a): (h,k) =
(1,2); (b): (h,k) =(2,2); (c): (h,k) = (5,2); and, (d): (h,k) = (20,2).

dossiou (1998) has no relation to (1.5). Its pdf is given by

D r—plP q+1/p
(@) |z —p|

T) = 1+ - 1.6
2BWnad e |11 T+ signlz - WP eo? (1.6)

for —oco < z < 00, —00 < p < o (location parameter), o > 0 (scale parameter),
| A |< 1 (skewness parameter), and p > 0 and ¢ > 0 (shape parameters). This
distribution has been studied extensively by Grottke (1999), Hueng and Brashier
(2003), Ioannides et al (2004), Hueng et al (2003), Adcock and Meade (2003)
and Arslan and Genc (2006). The distribution family (1.6) includes many of the
well-known distributions, including the skewed t distribution defined by Hansen
(1994), the t distribution, the normal distribution, and the skewed normal distri-
bution. But, there is no known relationships between (1.5) and (1.6).

The rest of this paper is organized as follows. In Section 2, we derive several
particular forms of (1.5). In Section 3, various representations for the moments
of the distribution are derived. An application to rainfall data is discussed in
Section 4 to show that the generalization given by (1.5) can be useful in practice
and that it outperforms the traditional gamma model for rainfall data. We also
provide an appendix which notes some technical results.
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2. PARTICULAR CASES

In this section, we derive six particular forms of (1.5). These derivations are
based on the properties of the incomplete beta function ratio noted in Appendix.
Further properties of this function ratio can be read from Prudnikov et al. (1986)
and Gradshteyn and Ryzhik (2000).

PROPOSITION 2.1. If1/k > 1 is an integer then, on using (A.1), (1.5) re-

duces to

¢ T —h
2Ap<1/ffr(’ﬁi_ /%) {1 + (X)k}
i—1— k(i~1)
X{Q Z th—1/2 1(/)k)<x)
)} e

“h
2AF(1/1§)PF(}81 1) {1 + (‘X)k}

1/k . .
T(h+i—1—1/k) ; ~a\kG-1)
2 T (h—1/k)T{) (‘T)

{1+( 7}\33) }1_i_h+1/kj|,ifx§0,

(2.1)

\

PROPOSITION 2.2. If h—1/k > 1 is an integer then, on using (A.2), (1.5)

reduces to

’

< —h
AT (1/15)2981 —1/k) {1 + (‘X)k}

—h
2AF(1/:)PF(}z)h - 1/k) {1 + (X>k}

(2.2)

F(@—l—}—l/k)
[”Z T (/R T0)

< (22) {1+( 1) }l‘i_l/k}m <o.
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Ifk=2and h—1/k =v/2 > 1 is an integer then (2.2) reduces to the well known
skewed t distribution with degrees of freedom v.

PROPOSITION 2.3. Ifk =2 and h = 1 then, on using (A.3), (1.5) reduces
to the skewed Cauchy distribution given by

flz) = {1+(i)2}~1{1+§-arctan (7:\5)} | 2.3)

PROPOSITION 2.4. Ifh—1/k =1/2 and h > 2 is an integer then, on using
(A.4), (1.5) reduces to

( —-h
2A\;€%FIE}E)1/I€) {1 * If)k}

x |1 + £ arctan (%)kﬂ B Lﬂ‘ > 5 (iFizi/Q) (')i\_x)k(z—l/z)
{1 ()} | wazo

(2.4)

2)\;;[(‘}2)1/@ {1 * ("E)k

Xll—%arctan (_¥)"/ \/‘Zr ’t+1/2)( A>k(z 1/2)
{1+( ) } z],zfasso.

PROPOSITION 2.5. If 1/k = 1/2 and h > 2 is an integer then, on using
(A.5), (1.5) reduces to

~h
f(z) = AﬁPI;(}:l)— 1/2) {1 + (X)z} [l + %arctan (j/\—)

L DG ] e

PROPOSITION 2.6. Ifl/k=p—1/2 and h—1/k = q—1/2, where p > 2 and
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g = 2 are integers, then, on using (A.6), (1.5) reduces to

( _ - 1-p—q
23T : E(f/;)qr (ql)— 1/2) {1 + (X)k}

2 k/2
x |1+ — arctan (7 )
T A

p-l i - —i
LS O e ()
‘“ _ (p-1/2)
*Z}mpfi%%a?uz) CoA

(e} s

— T 1—p—q
2AT ; E(11)/J;)QF (ql)— 1/2) {1 - (”X)k}

2 k/2
X |1+ — arctan (—E)
T A

p—1 ) . . —i
izrﬂi—ﬂ;(—%’“ )

i— T\ k(p-1/2)
“Zr —11;;;r(z21/2) (_WT)M 1

{1+( 7;) }1 " p},ifxgo.

3. MOMENTS

By Lemma A.2 in Gupta et al. (2002), the even order moments of X (having
the pdf (1.5)) are the same as those of the generalized t distribution given by
(1.1). The moments of the generalized ¢ distribution are known in the literature
(see, for example, McDonald and Newey (1984, 1988)) to take the form

P AT (h_n—]:1>r(n—]:1> -

(&) (-4)

for n < hk — 1. In the following we derive expressions for the odd order moments
of X. Theorems 3.1 to 3.6 provide closed form expressions for E(X™) when X
has the pdfs (2.1)-(2.6).
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THEOREM 3.1. If X is a random variable having the pdf (2.1) then

n _ A'T(h—(n+1)/k)T ((n+1)/k)
E(X") = T (1/k)T (h - 1/k)

oyt %’E T(h+i—1—1/k)
T (1/k)T? (h —1/k) ()

M@GE) (32

i=1

for odd integers n < 2(hk — 1), where

M) =B(2h—"22,?7g—1+i—1)

1
x oFy (i-i-h—].—l,2h—n+2;2h+i—1—_;1_7_k’)_

k -k k
(3.3)
PROOF. Using (2.1), one can write
n —_—
E(X") = A"T'(h—(n+1)/k)T ((n+1)/k)
T'(1/k)T (h—1/k)
1/k .
B kF2(h) ZI‘(h-}—z '1 Uk)N(i), (3.4)
AT (1/k) T2 (h — 1/k) < I'(7)
where
o< k —-h k(’i-—l) T k 1—i—h+1/k
N = n i 7z 1z
N(z)»/0 x{1+(/\)} ()\) {1-&-()\)} dzx.
Setting y = (x/A)¥, the integral N(i) can be reduced to
ntl,—kb poo 1—i—h+1/k
N(Z) — )‘ Y / yz—2+(n+1)/k(1 +y)—h (7-—16 +y) / dy
k 0
(3.5)

By application of Lemma A.l1 (in the appendix), the integral in (3.5) can be
reduced to M (i) in (3.3). The result in (3.2) follows by combining (3.4) and
(3.5). O

THEOREM 3.2. If X is a random variable having the pdf (2.2) then

. AT (h) R RA-ID (1/k 4 — 1)
Bx™) = I2(1/k) T (h—1/k) = IN0)

MG (3.6)
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for odd integers n < hk — 1, where
n+1 n+ 2)

M) =B —1—
(1) <h+z 1 PRt

+1 1
><2F1< —1+k h+z_1_T;h+i—1+E;1—7_k) (3.7)

PROOF. Using (2.2), one can write

h—1/k

y LG _Fl(;)“ Y nw, 38
=1

kT (h)

B = (1/k)T (h - 1/k)

where

v = [T fie (O (@) b () e

Setting y = (x/\)¥, the integral N (i) can be reduced to

An+1

0o _ 1—-i~1/k
) gl /0 y(HD/E=L (1 4 ) (7 k+y) dy.  (3.9)

N() =

By application of Lemma A.1 (in the appendix), the integral in (3.9) can be
reduced to M (i) in (3.7). The result in (3.6) follows by combining (3.8) and

(3.9). O
THEOREM 3.3. If X is a random variable having the pdf (2.3) then
n (o oI
Exmy =2 / y arctan(yy) (3.10)
™ Jo 1+y
forn < 1.

Proor. Using (2.3), one can write

4 [ z\2) 7! vE
E(X™) = ), z" {1 + (—)\—) } arctan (7) dz.
The result in (3.10) follows by setting y = x/A. O

THEOREM 3.4. If X is a random variable having the pdf (2.4) then

sy - Ao [

h=1 1.9
v AT (4) .
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for odd integers n < 2h — 1, where

M(i) = (h+z—1—§ 2+1)
><2F1(z’,h+z—1-—g;h+i;1—7_2). (3.12)

PROOF. Using (2.4), one can write

h—1

ny _ 21" (h) 2 I'(3) ,
E(X ) - m {ﬁNl + ; mNQ(Z)} y (3.13)

where

Ny = /Ooox" {1 + (%)2}_ha,rctan (—7{3) dx

and

wo = [Tl (3] (7;){1+(’f;) Ve

Setting y = (x/A)?, the integrals N; and Na(4) can be reduced to

o0 n
Ny = Xn+1/ w(m:(%y)—dy (3.14)
o (1+y?)
and
) )\n—l—l 1-2¢ 00 _ 3 .
Na(i) = — [Ty aen T () T (619)

By application of Lemma A.l (in the appendix), the integral in (3.15) can be
reduced to M(7) in (3.12). The result in (3.11) follows by combining (3.13),
(3.14) and (3.15). O

THEOREM 3.5. If X is a random variable having the pdf (2.5) then

E(X") =

AT (h) { 2k [ y" arctan('yy)k/Qd
ra h
" (1/k) | V7 Jo (1+4")

e T (3.16)
T &Try '
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for odd integers n < min(k/2, hk — 1), where

1 1
M(i)zB(thl—nJrl nt +¢——)

2 "k k 2
11
><2F1(z',h-"‘]: +§;h+i;1~7_k). (3.17)

PRrROOF. Using (2.5), one can write

o KT (R) 2 =@ .
E(X ) - ———ﬂ')\r (1/k) {——\/7_1_]\71 - ;:1 mNQ(%)} ; (3.18)
where

W= [Ta fi ()] e ()
Na(i) = /Ooo z" {1 + (%)k}_h (1})“%1/2) {1 + (7—;’1)'6}_1. dz.

Setting y = (x/A)¥, the integrals Ny and Na(i) can be reduced to

and

k/2

oo,
Ny = At / y" arctan(yy) (3.19)
0

h
(1+4)
B )\n-}-l,y—k/Q

0 —
Na(i) = ] /0 yi=3/2HD/k (1 4 yh (’Y_k + y) dy. (3.20)

By application of Lemma A.1 (in the appendix), the integral in (3.20) can be

reduced to M (i) in (3.17). The result in (3.16) follows by combining (3.18),
(3.19) and (3.20). O

and

THEOREM 3.6. If X is a random variable having the pdf (2.6) then

ny AT (h) 2k [ y™arctan(yy)*/?
o )‘m/k)r(h—l/k){?/o )

RS T)
Vi = T(+1/2)

1 Erpai-ype-n
(p—1/2)z T(i+1/2) M; (i) (3.21)

M, (1)

+
r =
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for odd integers n < min(k/2,2h — 1), where

. 1 n+1 n+1 1
M) = B g+ 3 - 2112 -1)
X oI (i,q -~ Z-;h+ 11— 'y_k) (3.22)

and

27T Tk
x oF) (p+z‘—1,q+i—1~%;h+i+p—1;1—7—k).
(3.23)

. . 1 +1
M2(1)=B(Q+l—1—%m——+n )

PROOF. Using (2.6), one can write

n kT h) p—1 F(’L .
B = /\I‘(l/k)I‘((h—l/k){2 1o \/‘Zp(z_i_l/z)N(Z)
+Zr(pf 7 ZI‘(zl-l)—1/2)N3(i)}’ | (324
where
Ny = /Oooz”{1+<§)k} harctan( )k/2d ,
o = [T (i ()} ()]
and

wo = [T (e () ) e () e

Setting y = (z/)A)*, the integrals Ny, N3(¢) and N3(i) can be reduced to

N, = /\n+1 /oo yn a‘rCta’n(vy)k/z dy (3 25)
= 7 , .

o (1+¢)
/\’n+1

~k/2 poo —i
v /0 y O Q)T (yE 4 y) dy (3:26)

Na(i) =
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FIGURE 4.1 Annual mazima daily rainfall for Orlando (1907-2000).
and
)\n+1,yk(1/2—i) ) 1—i—p
: —-3/2 1)/k —h —k
Na(i) = = [Ty ) () Ty (32)
0

By application of Lemma A.1 (in the appendix), the integrals in (3.26) and (3.27)
can be reduced to M; (i) and M (4) in (3.22) and (3.23), respectively. The result
in (3.21) follows by combining (3.24), (3.25), (3.26) and (3.27). O

4. APPLICATION

In this section we show that the skewed generalized ¢ distribution given by
(1.5) can be a better model than one just based on the generalized ¢ distribution
given by (1.1). We illustrate this for rainfall data from Orlando, Florida. The
data consists of annual maximum daily rainfall for the years from 1907 to 2000;
see Figure 4.1 below. The independence of the data values was verified by plotting
the auto-correlation function. The data were obtained from the Department of
Meteorology in Tallahassee, Florida.

Since rainfall is always non-negative, we first transformed the data to log
(rainfall/median(rainfall)). We then fitted both (1.1) and (1.5) to the transformed
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FIGURE 4.2 Probability plots for the models based on the skewed generalized t distribution (top)
and the generalized t distribution (bottom,).

data by the method of maximum likelihood. The quasi-Newton algorithm nlm in
the R software package (Dennis and Schnabel, 1983; Schnabel et al, 1985; Ihaka
and Gentleman, 1996) was used to solve the likelihood equations. The following
estimates were obtained:

A =0.845k = 1.557, h = 3.570 with — log L = 55.4
and

A=0.574,k = 1.942, h = 2.186,9 = 0.280 with — log L = 51.8
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FIGURE 4.3 Probability plot for the model based on the gamma distribution.

for the models based on (1.1) and (1.5), respectively. Thus, it follows by the stan-
dard likelihood ratio test that (1.5) should be preferred to (1.1). In order words,
the skewed generalized ¢ distribution provides a better fit than the generalized ¢
distribution.

The goodness of fit of these models can be examined by probability plots. A
probability plot is where the observed probability is plotted against the proba-
bility predicted by the fitted model. To check the goodness of fit given by (1.5),
one would plot F(y;)) versus (i — 0.375)/(n + 0.25) (as recommended by Blom
(1958) and Chambers et al (1983)), where F(-) is the cdf corresponding to (1.5)
and y;) are the sorted values, in the ascending order, of the observed annual
maximum daily rainfall. Similarly, to check the goodness of fit given by (1.1),
one would plot G(y;)) versus (i —0.375)/(n +0.25), where G(-) is given by (1.2).
These plots are shown in Figure 4.2. It is evident that the skewed generalized ¢
distribution significantly improves the fit given by the generalized ¢ distribution.

The traditional model for rainfall data is based on the gamma distribution
given by the pdf 1/{s°I'(a)}z% ! exp(—z/s) for z > 0. Fitting this model to the
data in Figure 4.1, one obtains the maximum likelihood estimates ¢ = 4.247 and
5 = 1.097. The corresponding probability plot for this fit is shown in Figure 4.3.
It is evident that the fit of the gamma distribution is even worse than that of

(1.1). Thus, the traditional model is no match to the model given by the skewed
generalized t distribution (1.5).
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APPENDIX
The calculations of this paper require the following technical results.

LEMMA A.1. (equation (3.197.9), Gradshteyn and Ryzhik, 2000) For a >
b>0,

o0
/ P71 + 1) %z + d)"°dz = B(a — b,b) oF; (c,a ~ b;a;1 — d),
0

where

??‘

00
2F1(abc:v =Z

k=0

Clc

denotes the Gauss hypergeometric function and (2) = z(z+1)--- (2 + k — 1)
denotes the ascending factorial.

LEMMA A.2. Siz important properties of the incomplete beta function ratio
given by (1.8) are:

e if a is an integer then

I(a,b) =1—- ; F—(;‘)(—:—);(_T)l)xi_l(l —z)b (A.1)

e if b is an integer then

b .
I.(a,b) = ; %wa(l —z)" (A.2)

o ifa=1/2 and b=1/2 then

I.(a,b) = %arctan 1 f ;v; (A.3)

o ifa=k—1/2 and b= 1/2 then

_ z(l—zx) ING) =y
I (a,b) = I, ( ) G 19)” 5 (A.4)
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e ifa=1/2 and b=j—1/2 then

I (a,b) = (; ;)
+y ) JZII‘1+>1/2 L) (4.5)

i=1

e ifa=k—1/2 andb=j—1/2 then

11
Iz (a,b) = I$ (k— 5,5)

T(k+i-1) . .
+Zr T I En v R (4.6)

Further properties of the above special functions can be found in Prudnikov
et al. (1986) and Gradshteyn and Ryzhik (2000).
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