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Cluster Analysis Using Principal Coordinates for Binary Data

Seong San Chael) and Jeong il Kim?2)

Abstract

The results of using principal coordinates prior to cluster analysis are investigated on the
samples from multiple binary outcomes. The retrieval ability of the known clustering
algorithm is significantly improved by using principal coordinates instead of using the
distance directly transformed from four association coefficients for multiple binary variables.
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1. Introduction

Principal component analysis in an Nxm data matrix and principal coordinate analysis in an NxN
symmetric matrix composed of Euclidean inter-point distances are included to interpret the distance
between the 7-th and j-th objects of NN samples. A reduction in number of axes is required which is
normally effected by a principal component analysis since there is no known method of generating a
Nx N positive semi-definite matrix that is always available, as mentioned by Gower (1966, 1971), Gower
and Legendre (1986). With certain criteria, principal component analysis on the mxm covariance (or
correlation) matrix and principal coordinates analysis on the NN  symmetric matrix (formed with
distances between objects) are defined as being dual to one another when they both lead to set of N
data points with the same inter-point distances. Chae and Warde (2005) showed that the use of
principal coordinates was more effective than the use of principal components on retrieval of
clusters for multivariate continuous variables.

In recent, the use of multiple binary data has occurred in the field of psychology, biology, genetics,
and clinical trials. Asparoukhov and Kranowski (2001) compared thirteen discriminant procedures by
applying them to five real sets of binary data from clinical trials. Lee (2005) studied discriminant analysis
of binary data with multinomial distribution by simulation study in discriminant analysis. In cluster
analysis, Huang (1998) focused on the technical issues of extending K-means algorithm to cluster data
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with categorical values, while Ordonez (2003) compared three variants of the K-means algorithm to
cluster binary data streams.
The main objective of this study is to investigate the use of principal coordinates into the data from

multiple binary outcomes prior to cluster analysis. The similarity between the #-th and j-th objects is
calculated depending on different association coefficients with various settings of parameters. Then

distance is constructed using the formula, d;;= \/T——y,-j, where 7, is the similarity between the i-th
and j-th objects depending on different association coefficients. The matrix formed with elements dj; is
used for applying principal coordinate analysis prior to cluster analysis.

Rand’s (1971) C statistic is used to compare the retrieval abilities and the agreements of clustering
algorithms based on how they partition the object space. The mean and variance of Rand’'s C
statistics for given K are found in DuBien, Warde and Chae (2004). It evaluates the results of
cluster analysis based on how they partition the data points in the concept of reproducibility. And the C
is a measure of similarity with 0 < C<1. When the partition produced by clustering algorithm is

identical to the structure within data treated, the C is 1. The results of applying principal coordinates
analysis prior to the use of agglomerative clustering algorithms are examined and compared.

2. Agglomerative Clustering Algorithms

Suppose a sample of size N is observed with =z variables on each data point. The NXm matrix of
measurements, say X, might be X (yum=X"= [ X; Xy Xy_; Xy17 where X;
represents a mx1 vector of measurement on the #-th objects. Then a cluster, y, is simply a
nonempty subset of the object space, and a clustering, ¥ = (¥;, ¥3, ..., ¥g), is any partition of
the object space, if the following three conditions hold:

(1) For every v,€ Y, v,€ @;

Q¥ y, vy, €Y and y,#y,, then y,Ny,= O;

3 Uk iv,=X

Some notations useful for understanding a cluster, a clustering, an hierarchy and an agglomerative
clustering method can be found in DuBien and Warde (1987).

Let Y represent the ‘‘true’’ structure of the N data points with number of clusters, K, and
Y%Kl be a certain type of rearrangement of Y with K clusters. Let Y denote a clustering that
result from applying an agglomerative clustering algorithm to the N data points with number of
clusters, K. Then Rand's (1971) C(Y,Y') is a measure of the ‘retrieval’’ ability of the
agglomerative clustering algorithm to the true structure for K.

For any clustering Y™™ %1 in the hierarchy, if the distances d;, dj and dj between pairs of
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clusters y,, y;,, and y, are obtained recursively from clustering YW E+LL E(N, then the

distance between the new cluster y(; and any other cluster y,€ Y™ & can be computed from

the following formula:

d(ij)k — _1:;&1& djk + 1_“%.‘;2_71 dz'k + Bdij

where  d;{d;{d; This formula represents a two parameter (B, 7)-family of

agglomerative clustering algorithms in Chae and Warde (2005). In the (8, x)-family, (0.0, -05)
is known as single linkage; (0.0, 0.0) as average linkage; (0.0, 0.5) as complete linkage; (-0.25, 0.0) and

(-05, 0.0) as representations of the flexible strategy; (-05, 0.75) as recommendation by DuBien and
Warde (1987).

3. Principal Coordinate Analysis

Suppose an NxN symmetric matrix is conformed with elements of Euclidean distance from the Nxm
data matrix X, where d,, i=1,2,...,N—1, j=i+1,...,N and d;=0. The coordinates by
using an NxN symmetric matrix, say F, could be found of N data points that generates the distances
between the i-th and j-th objects, which is termed as the inter-point distances. By using the
inter-point distances from F, a cluster analysis might be applied to establish groups of objects
assigning objects to the same group when their coefficients in F satisfy certain criteria. Then a
representation of the multivariate sample in a small number of dimension (in two or three dimensions)
which reflect the inter-object distances, might be constructed by recognizing the metric nature of the
NxN symmetric matrix F.

Principal coordinate analysis involves projecting the points onto a space defined by their small number
of principal axes and the distances between the ¢-th and j-th objects can be approximated. When all
the distances between the ¢~th and j-th objects of N samples are known, their coordinates axes are
found by investigating a set of conditions for a solution to exist in real Euclidean space. However, there
Is no known method of generating a positive semi-definite NN symmetric matrix with elements
d;i=1,2,...,N—1,j=1i+1,...,N to represent the similarity between the i-th and j-th

objects. Thus a reduction in the number of axes is required which is normally effected by a principal
component analysis.

Consider the matrix XX, that is required for a principal coordinate analysis, where X is the
standardized Nx# matrix and the matrix X X that is required for a principal component analysis.
Suppose the matrix X X has an eigenvalue A and corresponding eigenvector v, and the matrix XX’
has an eigenvalue 7 and corresponding eigenvector . From the relationships between X Xv= Av
and XX wu=nu, XX (Xv)=A(Xv), so that A=75 and Xv=~Fku , where k is a constant
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relating the scaling of the two sets of eigenvectors. If the ejgenvectors v are normalized as v v=1,
then A =wu=0vX Xv=AvVv=A If the eigenvectors u are normalized, then k=1 and
u= Xwv. Based on this relationship between two sets of eigenvectors, the principal coordinate analysis
operating on the XX’ is a dual of principal component analysis on the X X. For more details on the
duality of principal coordinates and components, refer to Gower (1966).

Let a; be the elements of the NxN matrix XX'. Then inter-coordinate distances between i-th

and j-th objects are presented by
m 2
QT A zaij ’gl(xir X jr dij .

Without loss of generality, this is related to the NxXN symmetric matrix F with elements,
d;,i=1,2,...,N—1, j=i+1,...,N and d;=0, which are the Euclidean distance between ¢

-th and j-th objects. If the NxN matrix F is positive semi-definite, the principal coordinate analysis

operating on the F' is a dual of the principal component analysis on the X X. Then it is possible to
compute principal coordinates of any Euclidean distance matrix without being in possession of either the
original data matrix or a variance-covariance matrix of the characters of the data points.

This method is also applicable to non-Euclidean distances and association coefficients, thus a method
of principal coordinate is more powerful than ordinary principal components analysis to ensure
identification on groups of objects.

In using principal coordinates, it is not necessary that the coordinates have any valid interpretation
since principal coordinates analysis has no associated method for including information on the variables
that is unlike the special case of principal component analysis. This technique of using principal
coordinates is very useful in the treatment of similarity or association coefficients, since the distances
between the i-th and j-th rows of principal coordinates are convenient ways of representing the
inter-relationships between objects.

4. Association Coefficients

An association coefficient is a pair-function that measures the agreement between pairs of observations
over an array of two-state or multi-state characters. Many of these coefficients measure the numbers of
agreement as compared with the number of theoretically possible ones. Characters coded in two or a few
states are especially suitable for the computation of association coefficients, although even continuous
characters can be coded to yield association coefficients.

In common, association coefficients are computed with two-state characters, which are for convenience
coded 0 or 1. The coded 0, 1 represent the presence or absence of characteristic or property. When
character states are compared over pairs of rows in a data matrix, the outcome can be summarized in a
2x2 frequency table as shown in table 1.
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<Table 1> 2x2 frequency table

Data points j
Code 0 sum
. 1 a b a+b
! 0 c d c+d
sum a+c b+d m

The number of characters coded 1 in both data points is written in the left upper quadrant of the
table, while the number of characters coded 0 in both data points is written in the right lower quadrant.
The other two quadrants are the number of characters in which the data-points disagree, being coded 1
for the j-th data point and O for the 7-th data point (or the converse). The marginal totals are the
sums of these frequencies, with m representing for the sum of the four frequencies
(m=a+ b+ c+ d), which equals to the number of characters in the study. It is convenient to define
w as the number of matches or agreements ( w= a+ d), and u as the number of mismatches
(u= b+ ¢), where m= w+ u.

In this study, four association coefficients are used: the simple matching coefficient, the Jaccard
coefficient, the Yule coefficient and the product moment correlation coefficient.
The simple matching coefficient is defined as

S —W atd
SM w+ u a+b+ctd’

From the formula, it follows that Sg; — 0 as ui-—) 0, and that Sgy — 1 as —ZL — 1. In its

complementary form, 1-— Sg, the simple matching coefficient is equal to the Euclidean distance based

on unstandardized character states, which can take the value of 1 or 0; thatis V1—Sg,= d.
The Jaccard coefficient is defined as

S = —a a
J atu atb+c

It is clear that S; — 0 as ui_? 0, and that S; — 1 as « — 0. The Jaccard coefficient omits

consideration of negative matches. Whether negative matches should be incorporated into a coefficient of
association may occur in serious doubt. It may be argued that basing similarity between two objects on
the mutual absence of a certain character is improper. The Jaccard coefficient is appropriate when
negative matches are to be excluded.

The Yule coefficient is defined as
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S —_ ad_ bC
Y ad+ bc

Its numerator is the determinator of the 2x2 table and the limits of S; are from —1 to + 1. There

are no matches at all with — 1, and are perfect matches with +1.
The product moment correlation coefficient is defined as

S, = ad— bc
P™ V(a+b)(ato)(d+b)(d+o -

It is clear that Sp — —1 as ad — 0, and that Sp — +1 as bc — 0.
Among four coefficients above mentioned, Yule coefficient does not satisfy the metric inequality
according to Gower (1971); Gower and Legendre (1986). The NxN symmetric matrix F might not be

positive semi-definite in theory. However, the matrix F constructed with Yule coefficient was
examined by eigenvalues at each step of simulation, and found that it was, in practice, non-negative
definite with designed structural settings of parameters given in the next section.

5. Design of Simulation Study

5.1 Fundamental Concepts with Basic Definitions

Currently, computer programs which generate ‘‘multiple binary’’ data treat X; as a

multiple binary random variable are not available. One is not able to randomly generate a
multiple observation in which each variable is an outcome of a Bernoulli trial. At this point, a
few definitions is offered.

Definition 1. A Bernoulli trial is an experiment which has two possible outcomes, generally
called success and failure. The sample space for a Bernoulli trial will in general be written

S={0,1}, where 0 indicates ‘‘failure” and 1 indicates ‘‘success”.

Definition 2. Let V be the total number of successes in N repeated independent Bernoulli
trials with probability p of success on a given trial. V is called the binomial random variable
with parameters N and p.

Definition 3. A multinomial trial, with parameters p;, ps, ..., is a trial which results in

one of % possible outcomes (outcomes are called classes). The probability of the #-th class
occurring on a single trial is p;, i=1,2,...,k thus 0<p,<1, p,+g;=1, for
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k
1=1,2,...,k% and le)iz 1.

Clearly a multinomial is simply a generalization of a binomial trial, having an arbitrary £
possible outcomes rather than just two possible ocutcomes.

Definition 4. Given an experiment which consists of N repeated, independent, multinomial

trials with parameters p;, i=1,2,...,k let X, be the number of trials which result in
outcomes in the ¢-th class, =1,2,...,k X, Xy, ...,X; is called the multinomial
random variable with parameters (N, py, Dq, ..., D4).

In the data point represented by the 1xm vector, X, where X;= (x;jXp...%), it is

desired that each component, x; be the result of the ¢-th Bernoulli or multinomial trial for

the j-th characteristic.
5.2 Multi-state Coding

The several states in qualitative multi-state characters cannot necessary be arrayed in some
obvious order but still refer to a unit character on logical grounds. These characters are
therefore often called unordered multi-state characters. An example would be alternative color
patterns of a given structure. One way of coding these is to use a separate symbol for each
state; an example is given in table 2.

<Tabhle 2> Example of coding for each state

Color Structure State
Red 0
Yellow 1
Blue 2

A match is scored if the same symbol occurs in two data points; otherwise, a mismatch is
recorded. Another method is to convert the qualitative multi-state character into several new
characters. The characters might then be coded as shown in the following table 3.

This is not an easy task in as much as the recoding has to be done in such a way that a
positive score on one of the new characters does not automatically bring about negative
scores on all other such characters derived from the same qualitative character. In practice, it
is commonly found that most qualitative multi-state characters can be converted into several
independent characters if a little thought is given to the problem. By the method of additive
coding, the multiple character states are coded as shown in table 4.
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<Table 3> Example of coding for two-state

Color structure Multi-state characters Two-state characters
1 2 3
Red 0 1 00
Yellow 1 010
Blue 0 01

<Table 4> Example of additive coding for two-state

Data point Multi-state character Two-state character
1 2 3
a State O (character undetectable) 000
b State 1 (weak positive) 1 00
c State 2 (moderate positive) 110
d State 3 (strong positive) 11 1

In this way a multi-state character 7 of m states is turned into m;—1 two-state

characters. The scoring is termed additive because the state 3, for instance, is expressed as

the sum of the effects of the two-state characters 1, 2, and 3. In any of this methods of
coding multi-state characters, two-state of binary data are produced. The procedure for
binomial data is then applied to the binary codes of the multi-state data.

Since each of these coding methods transforms multinomial data to binomial data, it is
sufficient for now to look at the effects of this procedure on binary outcomes.

5.3 Design of Simulation Study

Currently, computer programs which generate ‘‘multiple binary’’ data treat X; as a multiple binary

random variable are not available. One is not able to randomly generate a multiple observation in which
each variable is an outcome of a Bernoulli trial. There is no correlation structure associated with the
generation. It is necessary to impose a given correlation structure in order that principal coordinate
analysis may be incorporated into the test design.

A set of multiple binary samples was generated from a multivariate normal random variable, Z, with
the desired correlation matrix R with mean vector ( and with following possible structural parameters.

(a) N, the number of data points in Z;

(b) m, the number of variables;

(c) m,, the size of the k-th cluster generated from each population;
(d) p,, the probability assigned for the %-th cluster generated;
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(e} R, the correlation matrix.
For convenience, N=60, m=09, k=3, (n;;nyn3)=1{(20;20;20), (15 20;25)}, and the

correlation matrix R is of the form,

o
o b
>ty
b

I

and B is a matrix of all elements are 0.0, where o=.6, .9. This structure on the correlation matrix
was chosen in order to produce three principal coordinates that their eigenvalues were greater than or
equal to 1.0 and the sum of their eigenvalues was greater than 80% of the variance. In the
simulation, three principal coordinates were chosen to ensure identification of objects. More than three

principal coordinates up to nine coordinates ( rank(F)=9) were considered, however, there were no
significant differences on the retrieval ability of clustering algorithms.

For the multiple binary variables, each variable was transformed to a Bernoulli random variable with

parameter p, by translating the normal z value for each variate to ‘1" if PAZ<2)<p, and to

"0 if P(Z<2z2)>p,, k=1,2,3. A set of probability parameters (p;, p,, p3) was used to
3
separate the three clusters, where Zl p,=1.0.

Four different association coefficients, Sgy, S; Sy and Sp, represented by 7, and three set of
probability parameters (p,, by, p3) = { (.14, .33,.53), (.24, .33,.43), (.235, .33,.335)}  were
studied. Thus, a variable structural parameter {0, (n; 7y 735), (D), Dy, p3), 7} was defined. Finally, a

multiple binary data, X, with three clusters was generated from a multivariate normal random variable

with the desired correlation matrix R.

For each setting of {p, (%;nyn3), (b1, s, p3), 7}, the Rand’s(1971) C values that representing
the recovery of true structure for the six clustering algorithms were obtained by following steps:

(1) An object space X p, oOf data points was generated from Z y.,.

(2) The distance converted from association coefficient using the formula d,-j=\/1——7,~j, where
7; s the similarity between each pair of data points in X, was computed and stored in lower
triangular matrix order by rows as the vector D, ;

(3) The NxN symmetric matrix with elements, dj; in the vector D), was stored in F;

(4) A set of necessary and sufficient conditions that F formed with D, is positive semi- definite was
examined with acceptable tolerance;

(5) Calculate the eigenvalues and corresponding eigenvectors of F, then the Euclidean distance between
the 7-th and j-th representing inter-point distances with three principal coordinates was computed
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and stored in lower triangular matrix by rows as the vector D,;
(6) Each of the six clustering algorithms was applied to D; and D, to produce two different

clusterings, Y and Y'’;

(7) For each of the clusterings, Y and Y'’, from above steps, C(Y,Y) and C(Y,Y")
were calculated for the six clustering algorithms.
For each setting of the {p, (n{;n4n3), (b1, by, b3), 7}, the above sequence of steps was replicated

100 times and the sample mean of the C statistic, C, was computed for each of the six agglomerative
clustering algorithms for each of the two comparisons.

Consequently, C result from 100 replications to quantify the ‘‘retreval’’ ability for each of the
agglomerative clustering algorithms alone and after applying principal coordinate analysis based on
different association coefficients has been applied to the data from multiple binary outcomes for each

Setting of the {p, (”1;”2; n3)1 (pl’pZ, pB)’ 7}.

6. Results from Simulation

Based on the data from each setting of the various structural parameters
{0, (ny;myny), (b1, by, b3), 7}, all results from the comparative study will be discussed with
agglomerative clustering algorithms defined with (8, 7) and association coefficients. The results from
the simulation study are not independent of the fixed structural parameters. The results based on
different (#,;%973) will not be discussed since the retrieval abilities of clustering algorithms with

four association coefficients were not significantly different depending on our previous simulation study.
The results of using the Yule coefficient might be doubtable with applying clustering algorithms in the
sense of non-metric, however, the retrieval results were presented with four association coefficients.

In Tables 5-6, the results are given as. C computed over 100 replications for each setting of the
various structural parameters {p, (p;, Py, p3), 7} and for each of the six agglomerative clustering
algorithms mentioned above. Table 5 represents the results for retrieval ability on the data based on
different (p,, by, p3) with four association coefficients in the form of C(Y, Y¥). Table 6 represents
the results from applying principal coordinate analysis based on the NxN symmetric matrices
constructed with four association coefficients in Z"( Y, Y’). The distance from each association
coefficient is calculated with d,-,~=\/_1——y,-,~, where 7, is the similarity between the i-th object and J
-th object.

Table 5 shows that the trends of recovery for the six clustering algorithms are not quite different on
changing p. The difference in trends of recovery is mainly due to the association coefficients and

different (p,, by, p3) designed into the original data. The recovery level decreases as o increases for

four association coefficients with complete linkage, (.0, .5), while the trends of recovery for other
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<Table 5> The _C( Y, Y') from applying clustering algorithms with D,

fe) .6 .9

(D1, b9, 03) | (B, D)]y| SM J Y P SM J Y P

(0, -.5) | 4710 | .4710 | .3458 | .3458 | .5120 | .5195 | .3461 | .3461
(.0, .0) | .5559 | .5160 | .3458 | .3458 | .5487 | .5610 | .3461 | .3461
(14.33.53) (.0, .5) | .5768 | .4546 | .3650 | .3648 | .5632 | .4538 | .3491 | .3485
T (-.25, .0)| .5988 | .5313 | .5617 | .5603 | .5903 | .5794 | .5746 | .5645
(-.5, .0) | .5994 | .5544 | .5642 | 5642 | .6002 | .5819 | .5755 | .5629
(-.5, .75)| .5777 | .5606 | .5344 | .6551 | .5767 | .5736 | .5739 | .5668

(.0, -.5) | .4274 | 4205 | .3458 | .3458 | .4591 | .4649 | .3461 | .3461
(.0, .0) | .5172 | .4817 | .3458 | .3458 | .5285 | .5154 | .3461 | .3461
(2433 43) (.0, .5) | .5389 | .4286 | .3610 | .3574 | .5349 | .4264 | .3499 | .3470
o (-.25, .0)| .5593 | .4912 | .5500 | .5502 | .5588 | .5418 | .5537 | .5536
(-.5, .0) | .5581 | .6204 | .5527 | .6531 | .6636 | .5404 | .5557 | .5522
(-.5, .75)| .5373 | .5168 | .5085 | .5341 | .5252 | .5147 | .5427 | .5308

(.0, -.5) | .4156 | 4030 | .3458 | .3458 | .4373 | .4449 | .3462 | .3462
(.0, .0) | .5111 | .4564 | .3458 | .3458 | .5169 | .4963 | .3462 | .3462
(.285..33..385) (.0, .5) | .6370 | .4219 | .3570 | .3547 | .5319 | .4158 | .3483 | .3469
o (-.25, .0)| .5492 | .4826 | .5493 | .5505 | .5490 | .5256 | .5492 | .5524
(-.5, .0) | 5491 | .5085 | .5531 | .5502 | .5535 | .5239 | .5520 | .5521
(-.5, .75)| .5270 | .4995 | .5037 | .5299 | .5078 | .5093 | .5314 | .5155

<Table 6> The C(Y, Y) from applying clustering algorithms with D,

0 .6 .9

(1,02, 09) | (B, )]y SM ] Y p SM J Y P

(.0, -.5) | .9344 | .8012 | .9824 | .9934 | .6709 | .6284 | .8330 | .8538
(.0, .0) | .8623 | .7565 | .9659 | .9686 | .7578 | .7492 | .8273 | .8171
(14.33..53) (0, .5) | .7822 | .7635 | .7732 | .7792 | .7522 | .7656 | .7648 | 7634
T (-.25, .0)| .9080 | .8364 | .9426 | .9402 | .7700 | .7731 | .8453 | .8364
(-.5, .0) | .8981 | .8649 | .9028 | .9143 | .7814 | .7746 | .8101 | .8248
(=.5, .75)| .7707 | .7832 | .7820 | .7871 | .7071 | .7416 | .7504 | .7620

(.0, -.5) | .9513 | .7717 | .9913 | .9978 | .6667 | .5465 | .8658 | .8946
(0, .0) | .8731 | .7871 | .9614 | .9595 | .7511 | .7338 | .8222 | .8202
(.24..33..43) (.0, .5) | .7833 | .7717 | .7597 | .7616 | .7423 | .7491 | .7535 | .7509
T (-.25, .0)| .8683 | .8360 | .9258 | .9398 | .7488 | .7414 | .8294 | .8342
(.5, .0) | .8728 | .8757 | .9091 | .9236 | .7592 | .7379 | .7995 | .8021
(-.5, .75)| .7505 | .7814 | .7711 | .7616 | .6913 | .7111 | 7343 | .7515

(.0, -.56) | .9598 | .8039 | .9979 | .9999 | .7073 | .5541 | .8627 | .8941
(.0, .0) | .8564 | .8117 | .9456 | .9414 | .7529 | .7378 | .8158 | .7993
(285 .33..385) (.0, .5) | .7644 | .7677 | .7656 | .7652 | .7452 | .7444 | .7454 | .7486
T (-.25, .0)| .8683 | .8636 | .9205 | .9205 | .7489 | .7363 | .8249 | .8339
(-.5, .0) | .8570 | .8957 | .9072 | .9072 | .7506 | .7406 | .7958 | .8167
(-.5, .75)| .7669 | .8124 | .7682 | .7682 | .7062 | .7277 | .7377 | .7335
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algorithms are difficult to explain.
Table 6 displays the results from applying principal coordinates prior to the six agglomerative

clustering algorithms for {p, (p,, b, p3), 7}. The "C values calculated show an essential difference
compare to the results presented in table 5, implying that the use of principal coordinates prior to
applying the clustering algorithm has a significant effect on the recovery of the true clustering.

Principal components analysis and principal coordinates analysis are defined as being dual to one
another when they both lead to set of N points with the same inter-object distances, as previously
mentioned. Even if principal coordinate analysis is not an associated method for including information on
the variables, principal coordinates could be used to ensure the identification of objects from multiple
binary outcomes.

With the design described, more similar clusterings are retrieved when principal coordinate analysis is

applied prior to cluster analysis. The values of C show essential differences depending on the
association coefficients with the clustering algorithms. This implies that the use of different coefficient
prior to applying cluster analysis has a significant effect on the recovery of the clusters.

7. Application

The use of principal coordinate analysis prior to applying the agglomerative clustering
algorithm on the financial performance data (Affi and Clark, 1990). For convenience, the 25
companies with 7 variables are used as the data set with three clusters that identified by
different kinds. 7 variables are, ROR5 (percent rate of return on total capital), D/E (Debt-to
equity ratio for the past year), SALESGRS (Percent annual compound growth rate of sales),
EPS5 (Percent annual compound growth in earnings per share), NPM1 (Percent net profit
margin), P/E (Price-to-earning ratio), and PAYOUTR! (Annual dividend divided by the
12-months earnings per share). These variables are transformed to binary variables ”"1” if the
values of variables are large than the medians of each variables; "0”, otherwise. Then binary
values on ROR5 and PAYOUTRI are only reversed to make it easy to identify companies.

For each of companies, the sizes of clusters to which it belongs are (14-5-6) in the
Chemical, Health, and Supermarket with 25 companies. For this data, 3 principal coordinates
are assumed reasonably since those principal coordinates include more than 81 percent of
information depending on association coefficients. Hence the clusters are identified by the six
agglomerative clustering algorithms using 3 principal coordinates on the data with different
association coefficients. Results of applying principal coordinates prior to applying the
clustering algorithms are examined and compared with the results from directly applying the
six clustering algorithms with 7 variables.

As shown in table 7, the recovery of the ‘‘company defined clusters’’ is increased by using
principal coordinates prior to clustering algorithms instead of directly applying clustering
algorithms. The choices of clustering algorithms and association coefficients depend on the
characteristics of the data. However, the use of Yule index with principal coordinates prior to
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applying two flexible strategies, (— .25, .0) and (—.5, .0), is recommended to find the
better defined clusters on the data from Affi and Clark (1990).

<Table 7> The C values from applying clustering algorithms on financial performance
data (Affi and Clark, 1990) for diversified companies

oY, Y) oy, YY)

(8,m/y| SM J Y P SM J Y P
(0, -.5)| .3800 | .4967 | 4967 | 4967 | .5400 | .7067 | .6067 | .6067
(0, .0) | 4867 | .5267 | .5067 | .5133 | .6700 | .6200 | .5867 | .5267
(0, .5) | .5200 | .5167 | .4800 | .5267 | .6700 | .6700 | .5667 | .5267
(-.25, .0)| .5067 | .5200 | .5233 | .5367 | .6033 | .6167 | .7733 | .6333
(-5,.00| 5067 | 5133 | 5200 | 5267 | 6333 | .6167 | .7733 | .6333
(-.5, .75)] .5000 | 5533 | .5267 | .5333 | .6333 | .6333 | .5967 | .6400

8. Concluding Remarks

Applying principal coordinate analysis that is defined as being dual to principal component analysis
prior to cluster analysis has been investigated in this study. Principal coordinate analysis can be applied
to the multiple binary outcomes, while principal component analysis cannot. In using principal coordinates,
each object is uniguely identified even though principal coordinates do not include information on the
variables.

The six agglomerative clustering algorithms with four association coefficients were examined and
compared on various settings of structural parameters in the simulation study. The retrieval abilities of
clustering algorithms were different in trend of recovery of the true clustering depending on settings of
structural parameters. However, the use of principal coordinates instead of using direct dissimilarity
converted from similarity prior to applying the clustering algorithm had a significant effect on the
recovery of the true clustering.

As expected, the recovery levels were increased by using principal coordinates for the data from
Affi and Clark (1990). In particular, Yule index with principal coordinates prior to applying
two flexible strategies, (— .25, .0) and (—.5, .0), was recommended to find the better
defined clusters. The results of using the Yule coefficient might be doubtable with applying clustering
algorithms in the sense of non-metric as mentioned by Gower (1971), Gower and Legendre (1986).
However, the matrix F constructed with Yule coefficient was examined by eigenvalues at
each step of simulation, and found that it was, in practice, non-negative definite for generated
data in simulation and real data in application.

Using principal coordinates prior to cluster analysis, the retrieval ability of the known
clustering algorithms with four association coefficients was significantly improved instead of
directly applying clustering algorithms. However, one would better choose an association
coefficient and a clustering algorithm depending on the characteristic of data in analysis.
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