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Influence Measures for a Test Statistic
on Independence of Two Random Vectorsl)

Kang—-Mo Jung?)

Abstract

In statistical diagnostics a large number of influence measures have been proposed
for identifying outliers and influential observations. However it seems to be few
accounts of the influence diagnostics on test statistics. We study influence analysis on
the likelihood ratio test statistic whether the two sets of variables are uncorrelated
with one another or not. The influence of observations is measured using the
case—deletion approach, the influence function. We compared the proposed influence
measures through two illustrative examples.
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1. Introduction

The detection of outliers or influential observations has a long history. However, many
diagnostic measures have been proposed for influence analysis in the context of estimation. A
few works that treat detection of influential observations for test statistics in multivariate
analysis are found. Among others, Jung (2001) investigated the influence of observations on
the likelihood ratio test (ILRT) statistics in the canonical correlation analysis using the local
influence method introduced by Cook (1986). Influence analysis in testing problems is very
important because in extreme situations, few observations can dominate our conclusion about
the hypothesis as can be seen in Section 3.

Assume that the random vector z = (z T,y ”)7
partitioned such that

has the covariance matrix 2, where X is

PINPED)
N =<~
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And that £ and ¥ are p and ¢ dimensional random vectors, respectively.
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Consider the hypothesis
Hy:2,=0, 1)
which means the two sets of variables are uncorrelated with one another. Under the
normality, the LRT statistic for testing H, is given by

T _(n_(p+q+3)/2)l09|5—1'1|5ﬂ§g X

where S, 811, Sy, are the maximum likelihood estimators (MLE) of X, X'y;, 29, respectively,

and n is the number of observations. Then the test statistic is approximately distributed as a
chi-squared distribution with pq degrees of freedom using Bartlett’s approximation (Mardia, et
al., 1979, pp. 28%).

It is well known that the sample covariance matrix is very sensitive to outliers (Critchley, 1985),
and so is the test statistic 7". To investigate the influence of observations on the test statistic (2),
Jung (2001) considered the local influence method using the fact that the test statistic can be
written by the squared canonical correlation coefficients. Even though the local influence method is
effective in finding outliers and influential observations, the deletion diagnostics are fundamental for
confirmatory analysis (Fung, 1993). To accomplish these objectives in this work we considered the
deletion approach and the influence function. The proposed diagnostic measures can be expressed in
terms of statistics without involving the actual deletion of observations. The deletion approach is
widely used in many statistical analysis (Cook and Weisberg, 1982). However, case-deletion
diagnostics require amount of computation time. We obtained the case-deletion diagnostic measure
which can be expressed in terms of statistics without involving the actual deletion of observations.
It is usual to use single case-deletion diagnostic for influence analysis, because double case-deletion
diagnostic has somewhat complex form. We obtained double case-deletion diagnostic on the test
statistic 7". Thus the phenomenon behind influential observations can be explained through double
or conditional case-deletion.

In Section 2 we will derive the case-deletion diagnostic and the influence function of 7.
The former has the results which are single case-deletion, double case~deletion and
conditional deletion, while the latter has three sample versions which are empirical influence
function, sample influence function and deleted influence function. In Section 3 two numerical
examples will be given for illustration.

2. Influence Measures

The random sample {zy,..,2,} is drawn from (p+ q)-variate normal distribution

N(p,X). Assume that z, is decomposed as in Section 1, that is, 2, = (J,yT)” . Then
MLE of ¥ becomes §=(1/2)¥1(z; —z )(z;—2z )7. Also the MLEs Sy and Sy of Xy
t=1

and X'y are similarly obtained, respectively.
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2.1 Deletion Diagnostic

We will derive the deletion diagnostic for the statistic 7. Let 7{,) be the statistic with the
deletion of uth observation z,. Hereafter we denote by the subscript (u) the estimator or
statistic  based on the reduced data set without observation Z,. Since

Swy=1/(n—1) E z,—2z )z, —z )7 and ;(u)_—_ Y2:/(n—1), it follows that

i 1EU

Swy == (8- —1 (z,~2 )z —2)-

Thus we have

1Sl = (2 P98I - —5D

zuu]

where D, ,, = (2, — z)ls ! (z,— z ). Similarly 1811wyl and S22l can be obtained, where

D, . and D, ,, are similarly defined as D, ,,. Therefore

D D,
Ty = (1+1/)T4+ (c+ 1){|og(1—%ﬁ)—log(1—n—z_ﬁ;—)—log(l—;y:’—‘;—)}, 3

where c=—(n—(p+q+3)/2).
Further we will derive the deletion diagnostic for the test statistic 7' when two

observations are omitted. Similarly in case single case-deletion the relationship for double
case—deletion

_n—- 1 + D {u)v
where Dz,(u)v: (zv_;(u))TSE;}) (zv_;(u)) gives

18 ()| = (n—ﬁg PTISIA, o

where
Ap = 1= b (D, D) + 57 (Bt 2D = D Du)
which is due to the fact that
= o — — oy () P L

n—1-— Dz, w
In the same manner |57l and 8@, can be derived. Thus we obtained Z{,,) which can
be expressed in terms of statistics without involving the actual deletion of observations. That
is,
Ty = (1+2/c)TH+ (c+2)(logA, ,, — 1004, ,, — 1084, ., ). (4)
This indicates the joint influence of observations » and v on the test statistic. When T(y,)

and 7,y are large but 7{,) is small, a swamping effect of observation v by observation v



638 Kang-Mo Jung

can be inferred (Lawrence, 1995).

The influence effect of observation % on the test statistic 7' after deleting observation v
can be detected by 7{(y(v)) = Z{uy)— Z(»). This is called a conditional influence measure.
Assume that i,y and T(,(,)) are large but 7j,) is small. This situation implies that the
influence of observation ¥ may be masked by observation v. The proposed conditional
influence measure can be useful to detect a masking effect. 7{,(,)) can be rewritten as

T AZ uy AZ,’U/U
T(u(v))=—c—+log(A ‘1 )+(C+1){|Og(1_Dz’uv/(n_1) )

z,uv <y, uv
A:L'U'U A,'U/U
—log (= gy ) e (= W=y )} 5)

T, U Y, U

2.2 Influence Function

In this section we will derive the influence function for the test statistic 7' and consider
three sample versions of the influence function that will be used for investigating the
influence of observations on the test statistic for the hypothesis (1). ,

Let £ be a distribution function defined on the p-dimensional Euclidean space and 6 = 6 (F)
be a parameter of interest which is a functional of #. The mean vector and covariance matrix
for the distribution F' are written as p=pg () and X = X (F), respectively. For 0 < ¢ < 1,
the perturbation of 7 at 2 is defined by #,= (1 —€)F+ €d,,where 0, denotes the distribution
having unit mass at 2. The perturbation of 6 at z is 0(F.). The influence function for 6 at
z (Hampel, 1974) is defined by

i 8UF) —0(F)
0 €

(6)

The influence function for a parameter at 2 measures the effect of an infinitesimal
contamination at z on the estimator of the parameter. Hence the influence function can serve

as a diagnostic method of detecting influential observations in performing a test of hypothesis.
We have known that

EEFE)=2F) + - u(F)e—u(F)T - Z(F)le+0(&).
The equation (3.1) of Jung (2002) yvields
12 (F)1 =12 (E)+12 (Flite {8 (F) (2 — p (7)(z — p (F)T = De+ O().
It follows immediately that
F(T,Fz)=c{(z—pE)E(F)z-pF)— (@ —p,(F)ZE(F) (@ —p,(F))
— (= n(F)TEL (F)ly — pn(F)} )
We will consider three sample versions as in. Critchley (1985) : the empirical influence

function (EIF), the deleted empirical influence function (DIF) and the sample influence
function (SIF). A large absolute value of each sample version indicates that the corresponding
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observation is influential.

The EIF is obtained by substituting the empirical distribution function # and observation
z, for F' and z in (7), respectively. The EIF of T at z, becomes
EIF(T, z,) = ¢ (Dyuu = Deuu = Dypu) ®)
Equation (8) can be rewritten as
EIF(T,z,) =c(z,~2 ) (87 = 57" )z, ~ 2 ),
where S is the MLE of covariance matrix under H, in (1).

The SIF can be obtained by setting F= F and taking € = — 1/(n—1) in the definition of
the influence function (7) instead of taking a limit. Then the SIF for a parameter # at z, can
be rewritten as (n—1 ){9(?’) — O(Fu)}, where F(u) =1+n-1)HF—(n— 1)“15“ is

the deleted version of £ with the uth observation z, deleted. Thus from (3) it follows that
the SIF of 7 as

SIF(T, z,) = (n—1)(T— T,)) ©
The DIF is obtained by replacing F with F,) in (7) and it measures the effect of deleting
the uth observation on the estimator. The mean vector for @) 1s given by H (F w) =2 @)

and the covariance matrix for # w is Z(F ()) = S() computed in the previous subsection.
Thus we got
DIF(T, z,) = ¢ (D, s = Do, wu = Dy )
where D, (,), is previously defined in Section 2.1. It follows from D, @ =N (n—1)D,, that
DIF(T, z,) = ¢ (Dyuu = Dijuu = Dyua)

which is equivalent to FIF(T,z,).

3. Numerical Examples

3.1. Head-length data

Diagnostic measures described in Section 2 was applied to the head-length data (Mardia, et
al., 1979, p. 121, Table 5.1.1) previously analyzed by Jung (2001) based on the local influence
method. For this data set, the number of observations is 7 =25 and the dimensions are
P=2,9=2. The LRT statistic based on the full data set is 20.96, and therefore we conclude
that the null hypothesis is strongly rejected from the p —value 0.003,

We obtained information about influential observations for the test statistic 7' using the
deletion diagnostic and the influence function.
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<Table 1> Case-deletion results for the head-length data

Single case-deletion Double case-deletion Conditional case-deletion
J Tn—T J Tn—T I J Ty
16 -5.96 16, 20 -9.35 16 20 -6.65
24 -2.92 16, 24 -8.99 16 6 -6.60
20 ~2.69 16, 5 -8.15 16 23 -6.43
5 -1.96 16, 23 -8.02 16 13 ~6.38
23 -1.59 16, 14 -7.29 16 22 ~6.36

We carried out the single, double and conditional case-deletions, and the results are
summarized in Table 1. Numbers in Table 1 are arranged in decreasing order of
corresponding to the deletion measure, where 7(; denotes the statistic after deletion of the

corresponding index set. The case deletion results show that observations 16, 20 and 24 are
individually influential and observations 20 and 24 with observation 16 are jointly influential.
And also the results of the conditional case-deletion indicates that there are no masking
effects in the data set. Furthermore, the test statistic without observations 16, 20, 24 becomes
8.71. This gives the conclusion that the null hypothesis is not rejected. It implies that
opposite conclusions are made by removing observations 16, 20, 24 or not. We conclude that
observations 16, 20 and 24 are influential observations on the LRT statistic, and observation
16 is most influential.
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<Fig. 1> The index plots for the LRT statistic 7" using EIF and SIF.



Influence Measures for Test Statistic 641

The results based on the influence function are presented in Fig. 1. The EIF and SIF have
similar patterns, and they have the same influence information with single case-deletion.

From the results of deletion method and influence function we may conclude that
observation 16 is most influential from all influence measures. Observations 20 and 24 are
candidate for influential observations. The influence of observations 16, 20 and 24 are
confirmed by p—value 0.068 of the LRT statistic with the remaining data set discarding those
observations.

Single case-deletion shows the individual influence of an observation on the test statistic,
while double case-deletion present the influence information about joint influence. And the
conditional deletion measure provides the influence information about the masking effect.

3.2. Diabetics data

We considered another data set to show the effectiveness of the proposed method. The data
set (Rencher, 1995, p. 74, Table 3.6) was surveyed for comparing normal patients and
diabetics. Five variables (the first two variables are minor of interest and the last three
variables are major) are measured for 46 patients. The LRT statistic based on the full data
set is 13.73, and therefore we conclude that the null hypothesis about the independence
between two groups is rejected with 5% significance level.

The results of single and double case-deletions are summarized in Table 2. Even though
observations 6 and 37 are most influential from the individual influence point of view, the
omission of observations 26 and 27 changes the rejection about the null hypothesis based on
the full data into the acceptance. Thus the latter observations are more influential than the
former. The data set without observations in the results of double case-deletion has the p
-values larger than 0.05. That is, the corresponding data sets reject the null hypothesis. In the
double case-deletion observations 26 and 27 are still influential. To investigate the swamping
effect of observations 26 and 27 we conducted conditional case-deletions. Table 2 shows that
there is no swamping effect between observations 26 and 27. Thus we may conclude that
observations 26 and 27 are very influential. This numerical examples illustrated that
conditional case-deletion confirmed the joint influence of individually influential observations.

4. Concluding Remarks

Case-deletion diagnostics are fundamental for investigating the influence of observations on
the statistic or estimator. However, the computing load is unmanageable for large data set.
We derived the single and double case-deletion diagnostics for the testing statistic about the
independence of random vectors, which are expressed in terms of statistics without involving
the actual deletion of observations. From these diagnostics we may observe
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<Table 2> Case-deletion results for the diabetics data

Single case-deletion Double case-deletion Conditional case—deletion
J p — value J p — value I J p — value
6 .002 26, 27 310 27 6 .002
37 008 15, 26 177 27 26 d11
27 105 15, 27 176 27 37 .009
26 101 25, 26 175 27 8 017
8 015 2b, 37 172 27 15 058

the single influence, the joint influence and the conditional influence. And we showed the
algebraic relationship between case-deletion diagnostics and the influence function diagnostics.
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