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Abstract

In this paper, we review the variable-selection properties of LASSO and SCAD in
penalized regression. To improve the weakness of SCAD for high noise level, we
propose a new penalty function called MSCAD which relaxes the unbiasedness
condition of SCAD. In order to compare MSCAD with LASSO and SCAD,
comparative studies are performed on simulated datasets and also on a real dataset.
The performances of penalized regression methods are compared in terms of relative
model error and the estimates of coefficients. The results of experiments show that
the performance of MSCAD is between those of LASSO and SCAD as expected.
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1. Introduction

Variable selection is an important topic in linear regression analysis. By retaining a subset
of the predictors and discarding the rest (for example, stepwise forward selection or backward
elimination), the reduced regression model is more interpretable and sometimes reduces the
prediction error. Although subset selection methods are practically useful, they have several
drawbacks. The most severe drawback is their lack of stability. Since the variables are either
retained or discarded, subset selection methods often show high variance and don’t reduce the
prediction error of the full model. Shrinkage methods are useful to overcome these difficulties,
since they don’t suffer as much from high variability (Hastie et al. 2001, Chapter 3).

In Section 2, we introduce penalized regression. We review some well-known penalized
regression methods such as LASSO and SCAD methods. We describe and discuss the
proposed penalty function which is motivated to satisfy the advantages of LASSO and SCAD
in Section 3. The behaviors of the proposed method is between LASSO and SCAD. We
expect that the performance of the proposed method is more steady than those of LASSO and
SCAD. Finally, summary and concluding remarks are provided in Section 4.

1) This research was in part supported by the Brain Korea 21 Project.

2) Ph.D,, Department of Statistics, Seoul National University, Seoul, 151-742, Korea
E-mail ! youngjoo@stats.snu.ac.kr

3) Professor, Department of Statistics, Seoul National University, Seoul, 151-742, Korea

- 615 -



616 Young Joo Yoon and Moon Sup Song

2. Penalized Regression
2.1 Ridge Regression
Consider the linear regression model
y=XB+e,

where y is an #zx] vector and X is an #zxp matrix. When we use the squared-error loss
criteria to solve the linear regression problem, the collinearity in the design matrix X causes
unstable solutions. To remedy this problems, ridge regression technique imposes a penalty on
the size of regression coefficients. That is, the ridge regression shrinks the regression

coefficients by minimizing the penalized residual sum of squares, and the estimator is defined
by

B "% = argmin ﬂ( 1231(3)"— glx GBE+ A 12133).

Here A>=0 is a regularization (complexity) parameter that controls the amount of shrinkage:

the larger the value of A, the greater the amount of shrinkage. The ridge regression solution
is given by

B (XTX+AT) ~1XTy.

The solution adds a positive constant to the diagonal of X 7X before inversion. This makes

the problem nonsingular, even if X7X is not of full rank, and was the main motivation for
ridge regression (Hoerl and Kennard, 1970, and Hastie et al., 2001).

2.2 The LASSO

The LASSO (Least Absolute Shrinkage and Selection Operator) was proposed by Tibshirani
(1996). The LASSO is a shrinkage method like ridge, using L, penalty instead of L,. Thus
the LASSO estimator is defined by
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% LASSO __ arg min ﬁ( ,an(yi_ le ,‘,'ﬂj)z-i-/i gllﬁ;l)

Because of the L, penalty the solution is not linear in y, and usually quadratic

programming methods are used to solve the LASSO estimator. As the regularization

parameter A increases, some of the coefficients tend to be exactly zero.

2.3 The SCAD

Fan and Li (2001) proposed a variable selection method based on SCAD (Smoothly Clipped
Absolute Deviation) penalty function. As a motivation for the SCAD penalty they claimed that
a good penalty function should result in an estimator with the following three properties:

» Unbiasedness: The resulting estimator is nearly unbiased when the true unknown
parameter is large to avoid unnecessary modelling bias.

= Sparsity: The resulting estimator is a thresholding rule, which automatically sets small
estimated coefficients to zero to reduce model complexity.

* Continuity: The resulting estimator is continuous in data to avoid instability in model
prediction.

To introduce some insights on variable selection procedures, in this subsection we assume

that the columns of X are orthonormal. Following the motivations in Fan and Li (2001),

denote z= X7y and let 9=XX7y. A form of the penalized least squares is as follows.
Tlly = XBIP+2 2 0,018,) = Fly=3+ 5 2 2= 8742 22,08,

Since the minimization problem of this form is equivalent to minimizing componentwise, we
only consider the penalized least square problem

S (2= B2+ 1,181,

where 2 ;(l - |) denote Ap(| - 1).

The following two penalty functions are well known.

- Ly penalty: p,(18]) = 1812
» L, penalty: p,(181)=ABI.
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The L, penalty gives the ridge regression estimator. The L, penalty yields the LASSO

estimator discussed Section 2.2. In this case the LASSO estimator is of the form (see Fan
and Li, 2001, Section 2)

B= sign(2)(ld =),

where the subscript + indicates a value of zero for negative values of the argument.
Fan and Li (2001) provided some insights on the three requirements to be a good penalty

function. P'A(IB )=0 for large |B| is a sufficient condition for unbiasedness for a large
parameter. A sufficient condition for the resulting estimator to be a thresholding rule is that
the minimum of the function 18|+ p ;(I8) is positive. A sufficient and necessary condition for
continuity is that minimum of the function 18|+ p (|8]) is attained at 0. (See Fan and Li,
2001). In the case of LASSO, the L, penalty does not satisfy the sufficient condition for

unbiasedness for large parameters, and for ridge, the L, penalty does not satisfy the

conditions for sparse solutions and unbiasedness for large parameters. To satisfy the
conditions for unbiasedness, sparsity and continuity, Fan and Li (2001) proposed the SCAD
penalty function defined by

18l , 0<18<A

i =2| ~ 5 (B 248+ 2Y) |, Ald<ar

1 (a+ 1) , 181>k

for some a) 2. The derivative of the SCAD function is given by

5 p=a{1a<n+ L= gy p)

for some a>(0 and B> 0. The solution to the SCAD penalty is given by

sign (2)(l2l —A4) , |2<24

B= aiz((a—l)z—- sign(2)ad) , 2A<{lz<ad .

z , 12> aA
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3. Proposed Method

In Section 2 we considered the penalized least squares methods based on LASSO and
SCAD. These methods can be applied to variable selection problem, since both algorithms give
sparse solutions as the regularization parameter increases. In this section we compare the
performance of LASSO and SCAD on a toy example and propose a new penalty function
whose behavior is expected to be between LASSO and SCAD.

3.1 Motivation

Consider the following toy example:
y=xTR+ oe,

where £=(3,1.5,1,1,2,0,0,0)7 and the components of x and & are standard normal.
The correlation between x; and x; is o =7l with p=0.5. The number of observations is
n=140, and 06=0.5 and 3. Monte Carlo simulations with iteration M= 100 are performed
to compare LASSO and SCAD. The value of a in SCAD is set to 3.7, which is the value
suggested by Fan and Li (2001). The regularization parameters are estimated by using
validation set. To compare the performance of methods, the RME (relative model error) is

used, which is the ratio of model errors of the given method to those of the least squares
method. Model error is defined as follows:

ME () = E(u(x)— p(x))?,

where p(x)=xTB8, u(x) = x’ B. Estimated model error is given by

ME(=—"2— = (T B=2TH)?,

N1 xe test se
where n; is the size of test set, x's are the test examples. In this example, #,;=500. The
average and median of RME (in %) are summarized in Table 1.

While the performance of SCAD is better than that of LASSO for small o, the performance

of LASSO is better than that of SCAD for large o¢. These results are similar to the results
in Fan and Li (2001).
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<Table 1> Simulation results for the toy example

0=0.5
Method Avg. of RME(%) Median of RME (%)
LASSO 81.90 77.39
SCAD 65.28 63.14

o=3
Method Avg. of RME(%) Median of RME (%)
LASSO 80.79 86.11
SCAD 94.12 95.67

3.2 Proposed Penalty

Since the performance of SCAD becomes worse compared to that of LASSO for high noise
level, a modified SCAD penalty function is considered, which relaxes the unbiasedness

condition of SCAD. The modified SCAD (called MSCAD) penalty’s derivative is defined as
follows: '

. , A , B<A
p(B)= , , for 850
I(B)b Lasso(B) +[1—1(B8)]1p scan(B) , B>A

where  prassol *) and  pgcap( ) denote LASSO and SCAD penalty’s derivatives

respectively, /(A)=1, I(8)>0 as pB—o and I(B) is decreasing. This derivative is a

convex combination of LASSO and SCAD penalty’s derivatives. An example of /(8) is as
follows:

_ 1

The derivative of SCAD penalty function is zero for }B]>@d and that of MSCAD
approaches zero. The MSCAD estimator is not unbiased but nearly unbiased for large values
of |Bl. According to the unified algorithm, which was proposed by Fan and Li (2001), the

solution to the penalized least squares problem can be obtained by iteratively computing the
ridge regression

Bi=A{X"X+nZ (B} ' XTy,
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where X ,;(B,) is the diagonal matrix with diagonal elements depending on B, through the
derivative p’ i

Thus for the penalized least squares problem, the differences between LASSO, SCAD, and
MSCAD can be characterized by ;. Figure 1 shows the plots of p,(8) of three penalty
functions with ¢=3.7 and A=1, for 0.
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<Figure 1> Plots of p,'(8). A=1, a=3.7 for LASSO, SCAD and MSCAD.
In (c), dashed, dotted, solid, dotdash and longdash correspond to
k=1/5, k=1/2, k=1, k=2 and k=05, respectively.

The RME’s of MSCAD method ( k= 1/2,1,2) relative to the least squares method are
computed and summarized for the toy example in Section 3.1. The results are summarized in
Table 2. We can see that for small ¢, the RME’s of MSCAD are larger than that of SCAD,
but smaller than that of LASSO. For large o, these aspects are conversely showed. The
results show that the performance of MSCAD is between those of LASSO and SCAD. For
larger k£, MSCAD is close to SCAD. We expect that the performance of MSCAD is more

steady than those of LASSO and SCAD. In the next section we will compare these methods
with a real data example.
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<Table 2> Simulation results for the toy example in Section 3.1

0=0.5

Method Avg. of RME(%) Median of RME (%)
MSCAD (k=1/2) 78.85 71.35
MSCAD (&=1) 7456 75.01
MSCAD (k=2) 71.64 67.46

=3

Method Avg. of RME(%) Median of RME (%)
MSCAD( k=1/2) 85.19 92.36
MSCAD( k=1) 89.15 95.87
MSCAD( k= 2) 93.47 97.65

3.3 Real Data example - Prostate Cancer Data

The data come from a study by Stamey et al. (1989) that examined the correlation between
the level of prostate specific antigen (PSA) and a number of clinical measures in 97 men who
were about to receive a radical prostatectomy. This example was considered in Hastie et al.
(2001, Chapter 3) to compare various variable selection and shrinkage methods. The goal is to
predict the log of PSA (Ipsa) from a number of measurements including log-cancer-volume
(Icavol), age, log of benign prostatic hyperplasia amount (Ibph), seminal vesicle invasion
(svi), log of capsular penetration (Icp), Gleason score (gleason), and percent of Gleason
scores 4 or 5 (pggd5). First we standardized the predictors to have unit variance. Then we
performed ordinary least squares method and various variable selection methods for this
dataset. The variable selection methods used in this analysis are the best-subset selection
using an all-subset search (see Hastie et al, 2001), LASSO, SCAD and MSCAD. In MSCAD,
the considered values of % are 1/2, 1 and 2. We divided this dataset into training dataset of
size 67 and test dataset of size 30. To select regularization parameter, 10-fold cross validation
method is applied to the training dataset. The test dataset judges the performance of the
selected model. The estimated coefficients (except intercept) and test errors with SE(standard
errors) are showed in Table 3.

The performances of penalized regression methods are better than those of ordinary least
squares and best subset selection methods. Among the penalized methods, SCAD has the best
performance. But the difference is not so much. The performance of MSCAD is similar to that
of SCAD for large k&, while MSCAD method for small % performs similar to LASSO. These
aspects are not so different from those of toy example in the previous section. The selected
variables for three penalized methods are similar (pgg45). Especially for lcavol, the estimated
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coefficients of SCAD and MSCAD are larger than that of LASSO. For other variables, the
latter are larger than the former. This may be caused by the unbiasedness of SCAD and near
unbiasedness of MSCAD for large coefficients, which LASSO does not satisfy.

<Table 3> Estimated coefficients and test errors for prostate cancer data

MSCAD

Variable LS Best Subset LASSO SCAD k=1/2 k=1 k=2
Icavol 0.680 0.740 0.544 0.806 0.574 0.610 0.683
lweight 0.305 0.367 0.199 0.104 0.177 0.168 0.148

age -0.141 - - - - - -
Ibph 0.210 - 0.061 0.028 0.040 0.035 0.026
svi 0.305 - 0.126 0.006 0.093 0.073 0.036

Icp -0.288 - - - - - -

gleason -0.021 - - - - - -
pggls 0.267 - 0.041 - 0.023 0.016 0.005
Test Error| 0.586 0574 0.485 0.472 0.483 0.481 0.479
SE 0.184 0.156 0.158 0.133 0.155 0.152 0.145

4. Summary and Concluding Remarks

The variable-selection properties of LASSO and SCAD in penalized regression are studied
in this paper. While the performance of SCAD is better than that of LASSO for low noise
level, the converse result is true for high noise level. To improve the weakness of SCAD for
high noise level, we proposed the MSCAD (Modified SCAD) penalty function which relaxes
the unbiasedness conditions of SCAD. The results for simulated data and real data showed
that the performance of MSCAD is between LASSO and SCAD as expected. That is, the
performance of MSCAD is more steady than those of LASSO and SCAD. In this paper, we
considered only some special cases of MSCAD. It is necessary to study theoretical properties
of general MSCAD, such as the existence of solution, oracle property (see Fan and Li, 2001)
and the behaviors of the estimates. A unified algorithm proposed by Fan and Li (2001) is
used to estimate regression coefficients of SCAD and MSCAD penalty functions. This
algorithm contains a matrix inversion. Thus the stability of the algorithm can not be
guaranteed. In addition, the solution may be a local one since the object function is locally
approximated by quadratic function. To improve these problems of the unified algorithm,
stagewise approaches such as gradient boosting (Friedman, 2001) and margin boost (Mason et
al., 2000) can be considered.
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