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Weak Convergence for Nonparametric Bayes Estimators Based
on Beta Processes in the Random Censorship Model

Jee Chang Hongl

Abstract

Hjort(1990) obtained the nonparametric Bayes estimator # .o Of Fy with respect to
beta processes in the random censorship model. Let X ---, X, be iid. F; and let

(i, -, G, be ild. G. Assume that £ and G are continuous. This paper shows that

{ﬁ' o (u)l0 <u <7} converges weakly to a Gaussian process whenever 7 < o and
Fy(r) <1.
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1. Introduction and Summary

Let X; ---, X, be independent and identically distributed(ii.d.) random variables from a
distribution £y on [0, %) having £,(0) =0 and let C -+, C, be iid. random variables with
cumulative distribution function(cdf) G on [0, co). Assume that the X; are independent of the
C. LetT,=min{X,C}, §=1{X <G} for each i=1,---,n, and let 73,---, T, be iid
random variables with cdf Hy. Then 1— Hy=(1—F;)(1— G). In the usual random
censorship model one observes only (7%,6;),, (T, 6,).

The problem of constructing nonparametric Bayes estimators(NPBE) for #; based on the
censored data (73,6,),--,{7T,,d,) has been considered by many authors by placing a prior
distribution for Fy on the space J of all cdf’'s on [0,00). Using the Dirichlet process
introduced by Ferguson(1973), an NPBE for F; based on the censored data has been

considered by Susarla and Van Ryzin(1976). Ferguson and Phadia(1979) obtained an NPBE for
Fy, with respect to the prior process neutral to the right introduced by Doksum(1974).
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Ferguson and Phadia(1979) extend the result of Susarla and Van Ryzin(1978) that a Dirichlet
process is a process neutral to the right.
Given a cdf #y on [0, o ), the cumulative hazard function(chf) A, is defined by
dFy(s)

t)= —— 1.1

The formula (1.1) yields
B®)= [ 1-Fs-lids) 12
0]
which is well known as the Volterra integral equation. The unique solution of the equation
(1.2) is given in terms of the product integral by

Fy(t)=1- ] (1-da,), t=0. (1.3)
0,¢]

See Gill and Johansen(1990). Here [ is the product integral.

Let NV be the process counting observed failures and Y be the process giving the number
at risk defined by

M) = ST <1,6,=1},
1=1

(1.4)
Y(t)= Y 1{T, = t}.
=1
The Nelson-Aalen estimator A, of 4y based on (73,6,),-,(7,,6,) is given by
-4 dN

og ¥

By a substitution of (1.5) into the right-hand side(rhs) of (1.3) we obtain the Kaplan-Meier

estimator Fy,, of Fy which is given by

For®)=1-J[00-dd,,), t=o0. (1.6)
0,1]

For investigation of the survival phenomena the chf of Ay is as a basic object as the
survival function . Let A be the space of all chf’s. Hjort(1990) introduced a beta process for
Ay with parameter functions ¢( + ) and a( - ), denoted by Ao ~beta(c,a), where c( + ) is
a piecewise continuous and nonnegative function on [0, ) and «a( - ) is a cumulative
hazard function. A beta process is an A-valued Lévy process with independent
increments.(See the definition of a beta process in Hjort(1990).)

The NPBE A_, of A, with respect to the beta process A, ~beta(c,a) based on
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(73,6,),-,(T,,5,) obtained by Hjort(1990) is given by

~ cdo+dN

A, W)= | —— amn
0] c+Y

If 4 is a beta process, then the random distribution ' given by (1.3) is a process neutral to

the right. By substitution of (1.7) into rhs of (1.3) we obtain an estimator o Of ' given by

F,t)=1-JIa-d4,,), t=o0. (1.8)
0,¢]

Using the fact that the posterior of a beta process given data is also a beta process and a

beta process has independent increments, one can easily see that F e 15 a conditional
expectation of F' given data. Therefore we see that the estimator an given in (1.8) is an

NPBE of Fy with respect to a process neutral to the right under a squared error loss

function. Recently, Gill and Johansen(1990) extended the usual delta method to a class of
compactly differentiable functionals and then used it to prove the weak convergence of the
Kaplan—-Meier estimator. This new approach fits beautifully with the differentiability and now
becomes one of the most powerful tools in proving weak convergence of many important
statistical functionals. This technique which is referred to as the functional delta method is

used extensively in our discussion of the weak convergence of the NPBE F' P
Let (£2,7, P) be the underlying probability space for this model and take filtration as
J,=0{1{7; <s56=1},1{T, =s}:0<s<ti=1--n}, t=0. (1.9)
Now, (£2,3,{3,:t >0}, P) is the stochastic basis for this model. Martingale technique is

used efficiently for obtaining the covariance structure of the weak limits of our estimators.
Consider the process M on [0,c0) given by

M) =N{t)— fthL‘lo, (1.10)

where 4y is given by (1.1) and the processes N and Y are given by (1.4). It is well-known
that the process M is a square-integrable zero-mean martingale with respect to the filtration
in (1.9) and it has the predictable variation process {M, M) given by

M M) ()= /OtY(l—AAo)dAO. (L.11)

This is the unique, nondecreasing, predictable process such that M? —{M, M) is again a
martingale.

Now we outline the idea how the functional delta method works combined with
differentiability and Skorohod almost sure representation. Let U, be random elements of a

normed vector space such that
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Z=a(U,-2) 2 2z (112)

where a,—>o is a sequence of real constants. Let ¢ be a function from this space into
another normed vector space, compactly differentiable at z in the sense that for all {,—0,
t, € R, and all h,—h
t. (¢ (z+t,h,) — ¢ (2)) > do(z) - b,
where d¢(x) is a continuous linear map between the two spaces.
By the Skorohod almost sure representation we may pretend that Z, converges almost surely to

Z. Now apply the definition of differentiability with = as given, ¢, = a;l, h,=Z, h= 2, so that

z+t.h, =z +a,'Z = U, We obtain that a,(¢(U,) —¢(z)) %5 dé(z) - Z, which implies that

a,(p(U,) —d(x)) g2 dé(z) - Z as desired. In most statistical applications the random elements

U, and %, in (1.12) are the empirical distribution functions of data and the empirical processes with
1
a,=mn? in which (1.12) is guaranteed by Donsker’s theorem(Van der Vaart and Wellner(1996)).

Define F., F, R, FO as (3.1) and (3.2). Here ¢(”) is given by (3.5). In our application, the
functional delta method with U, = (F., F)), z = (F}, F,), a,= v/n

Z,=(Z,2,) = (VB - R, va(F, - F) B (242) =2 (1.13)

for the weak convergence of the process Fc’a is not directly applicable since the functional
¢(") varies over n = 1 and it is not clear that ¢(”) is compactly differentiable.
Susarla and Van Ryzin(1978) verified consistency of Fa, the NPBE of F' with respect to the

Dirichlet process. Perhaps the most important small sample advantage of NPBE F__ over the

¢
Kaplan—Meier estimator is admissibility. As noted by Susaria and Van Ryzin(1978), NPBE is
probably admissible, although it may not be easy to establish. Some other small sample
advantages of NPBE are discussed in Susarla and Van Ryzin(1978).

Section 2 extends functional delta method for our purposes. Using the extended functional
delta method and an analytic property of the product integral operator, in Section 3, we verify

the weak convergence of Fc}a. We introduce the compact differentiability of the mappings ¢,
¢ and #3 and give their derivatives in Appendix.

2. Generalized functional delta method

Let B} and B, be normed vector spaces and let ¢ : B;— B,. We briefly give a definition
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of differentiability, see Gill(1989) for further background.

Definition 2.1 (Gili(1989)) We say that ¢ : B,— B, is compactly differentiable at = € B, if
there exists a continuous linear operator d¢(x ) : B,— B, such that for all ¢,—0(t, € R) and
h,—h € By,

— 0 as n—>00,

L (g@+th,)—p() - dp(z) - h

[ o]

Here | - ”oo is the supremum norm on the space of B,.

The following Gill’'s(1989) theorem, finally present definitive version of delta method.

Theorem 2.2 (functional delta method) Let U, be a sequence of random elements of B,

D

a,— > a real sequence, such that an([/;b—m)—% Z for some fixed point T € B and a
random element Z of Bj. Suppose ¢ is compactly differentiable at T € B;. Then,
0. (&)= 6() L do(a) - 2,
1.(6(0) - 0@) —dp (@) - 2 L 0.

For our purposes, we extend Theorem 2.2 to the case where the functional ¢(”) may vary

over n = 1 and may not be differentiable. The following theorem is the generalized functional
delta method for weak convergence of the process.
Theorem 2.3 Let U, be a sequence of random elements of B, a,—>% a real sequence,
such that a,(U,—x) —1—7> Z for some fixed point £ € B, and a random element Z of Bj.
Suppose ¢ is compactly differentiable at z. If the condition

a, | o™ —¢ | ., 2550 as n—ooo 2.1
is satisfied. Then

0.6 (0,) =4 (@) L dp @) - 2

and moreover, q_(¢") (U,) — ¢ (z)) and d¢(z) - a, (U, —x) are asymptotically equivalent.

Proof. We show that
len (6™ (1) = ¢ () — dg (z) - Z||_ 2= 0.

But we have
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o (6™ (U,) — ¢ (2)) — dg (=) - 2],
< lan (@™ (T,) = $(T.)) + 0, (8 (U,) — 6 (z)) — do (z) - Z] .
By condition (2.1) and Theorem 2.2, the first and second terms of (2.2) converge to 0 as.,

(2.2)

respectively. []

3. Weak convergence of #,,

Let 7} be the empirical (sub)distribution function of the T, with 6; =1 and let F, be the
empirical distribution function of all the 7;. With the processes N and Y in (1.4) we may

write
n (3.1)
Let
1 _ 1
Fl(t) = BF(t), (32)

F,(t)=EF (t).
Then it can be easily seen that

R®= [-6)aE,
0 (3.3)

Fo(t) =1-(1-F#)(1 - G)).
For Fy(r) <1, < o, it follows from (3.3) that

¢ dF dF}
A4 @)= | —X= f ] ;7
— I

iF (3.4)
Rt)=1-]]q-—=¢ )—1—H(1— ).
) 1- o,¢) —Fo

For fixed 7>0, define the following mappings ¢, ¢, : D[0,7]*— D[0, 7],
¢3: D[0,7]— D0, 7] by

@@m=@1lj,
-y

)= [ yiz,
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dy(z)=1— H(l—dx)

where D[0,7] is the space of all real functions on [0,7] which are right-continuous on [0,7)
and have left-limits on (0, 7].

It turns out that
Ay = (¢2 ° ¢1)(F01; Fo),

£y = (¢3 ° Py © ¢1)(Fol, Fo) = ¢(F01; FO)-
Then (1.5) and (1.8) can be rewritten

Ayy=(¢ » $)(FF,)
and

FKMZ (¢3 ° @y o ¢1)(Fnl;Fn) :¢(Fn1; Fn), (35)
respectively.

We prove the compact differentiability of the mappings ¢;, ¢, and ¢; in Appendix with
their derivatives.
For each n > 1, let

o (z,y) = (§a+w,-c—+-(—i—y_—) )
n
where ¢, a are the parameter functions of the beta process. Then we may write
Aga=(9 o V)ELF,),
Foo=(95 < ¢ o o )ELF)=¢" (B F,). (36)
We prove weak convergence of Fc,a by assuming further that the parameter function c( - )

of the beta process beta{c,a} is bounded by a positive constant K> 0 so that
(A1) 0<c(t) <K, t=0

Theorem3.1 Let 7< oo and Fy(r) < 1. Let £ and G be continuous. Then
VilF,,—~F)Z R D],
1 = .
where 2= (1 _'E)) / ’1——‘? (le +ZdAo) is a zero-mean Gaussian process with the
— 40
asymptotic covariance structure given for 0 < s,t < 7 by

-5&-EO) [ g @7

Proof. Applying Lemma A4 to (h k) =(Z%, Z) at the point (z,y) = (Fy, Fy)yields
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R=dp(F,F) - (2, 2)
- [Hu-a(f = o = (f BN )de/ 47 -l 1—a([ 4 )

- _ A dz'
= [ - da) (= Zam + 1)

=(1—E))f 1—1F— (dZ'+ ZdA).

0

By Skorchod-Dudley almost-sure representation theorem(Billingsley(1986)) and (1.13), we
will show that

|va(F, .~ F)~R| 220
Using (3.5), (3.6) we have
|vr(F, .- F)-E|,
=H\/ﬁ[f’1c,a—pw+ﬁm—%]_3"w
<|val™ (7, F,) -, F|
+lvale (B, F,) - 6 (R, Fol - dp (B, Fo) - (2,2)]

The first term of (3.8) shows by integration by parts that this difference is bounded by a
constant C' times Hz‘iga—fl NA“OO. We have

|Valg® @) - (5L FI .

(3.8)

=l v/nl1— H(l——dﬁw)) —1-JIa-ddy))

fo,t] [0,¢]

= | vallla-dd ) - ITa-dd,,)]

[0, ¢] [0,¢]

(o0}

oo

= fH 1- dANA)(Ac,a ANA)(du H(l dAc,a)

00,u) (u,t] "
< | ViAo (t) = A (0))]
—Q—su ° cda C ¢ cdF}
= Ve fo hr(—Fo) | VR /o A-F)ch+A—Fp)

llelloe (t) L+ C leloFr (2)
C VR1-FI(t)  vn (Q-F ()Y
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.1 _CKa(t) . 1 _CKF/(t) |
S VRI-Fo@) v (L-F ()

as n— o, since 1—F(t) —>1— F; (t) and F!(t) — Fy (t).

By Gill and Johanson(1990), the second term of (3.8) shows that
| valg(FLF,) - ¢ (R Fy) —dp(RLFy) - (2,2)]] 25 0.
Thus
| va(F, .~ F)-R| 220
By Theorem 23, vn(F,,— Fy) = v/n (™ (FLF,)— ¢ (F, Fy)) and
R,=d¢(F,Fy) - (2., 7,)

= (- ) [ —— g+ Z7i4)

3.9

are asymptotically equivalent. The covariance structure of +/n (F ca — F,) is a asymptotically
equivalent to the covariance structure of R,. The asymptotic covariance structure calculations

involved in (3.7) are given in Appendix. We notice here that (3.7) coincides with (6.5) of
Gill(1994). This completes the proof. [

Appendix

In the following three lemmas, we compute derivatives of @1, ¢, and P3(see Gill(1989), Gill
and Johansen(1990)).

Lemma Al Let E = {(z,y) € D[0,7]xD[0,7]:0< [lyl, < M, M, € (0,1)} and Ilet

¢, : B, € D[0,7) X D[0,7]—> D0, 7] X D[0,7] be defined by ¢,(z,y) = (=, T—y ). Then
¢, is compactly differentiable at (z,y) € E, with derivative
k
(:E; * h,k? = h; )
-
Lemma A2 Let k= {(a:,y) = D[O; 7'] XD[O, 7'] . f ldr < M} and let
0

¢, : E, < D[0,7] X D[0,7]— D0, 7] be defined by & (z,y)= / ydr. Let (z,y) now be a
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,
fixed point of £ such that / |dy| is finite. Then ¢ is compactly differentiable at
0

(z,y) € E, with derivative
diy(5,y) - (k)= [ kot [y,

where the integral with respect to h is defined by the integration by parts formula if A is

not of bounded variation.
.

Lemma A3 Let E={vED[0,T]:f W|<MY} and let ¢5:D[0,7]— D[0,7] be
0

defined by ¢3(v)=1- [J(1—dv). Then ¢, is compactly differentiable at v € B with

derivative

dy) 1= [TIC-d)alla-w),

where a continuous linear operator is [ all of which need not be of bounded variation.

One of the most important properties of compact differentiation is that it satisfies the chain
rule : if ¥ : By— B, and ¢ : By~ B; are compact differentiable at * € B, and ¥ (z) € B,
respectively, then ¢ o ¢ : B, — B, is compact differentiable at « with derivative
dp{y(z)} - d(x)(a continuous linear map from B, into B;).

Lemma A4 The composite ¢ = ¢; o ¢, o ¢; is compactly differentiable with derivative
d¢ (z,y) - (h,k)
= [Ta-a(f 32 qhie+ [ 20000 -a%)
Proof. ¢ is compactly differentiable with derivative
dg (z,y) - (hk)
=d(¢3 ° ¢y o ¢ )(z,y) + (hk)
=dp3(dy © ¢1(z,y)) © dy(4y(x,y))  doy(z,y) - (B k)

=dgs(dy © $1(z,y)) © doy(¢y (z,9)) + (h,—2—)
(1-y)

=d¢3(ffi%)'d¢2(m1 liy). (h’E:k—y—)?)
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agy([ 72 - ( (1_’“y2dx+f—l—d_h—y>

= [ TIn-a d/—))d

2T -a(f 1%-).

Lemma A5 Let 7< o and F,(r) < 1. Let £y and G be continuous. Then

BB, ) =0-F&)0-KO) [ g
0 0

Proof.
Va(dZ+ Z7dAy) = n(dF: — dF* + (F; — Fy )dA,) W
= dN— YdA,.

By substitution of (1) into rhs of (3.9) we have

I PN P U 1
R=—=(-F)[ v =0 7| R

Using (1.10), (1.11) we see that

v (R, (s), R, (t))

= vl 0B o) [ T = - RO) [ T
l . 8 1 t 1
& 0= R - ARO[ ean] )
= 0B -ROE
0 4+
=L a-Rwa-ge) [ Y0
== RN~ RO [
sAE dﬁ’o

=a-BE0 -0 [ g
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