내부자유도를 갖는 차분래티스볼츠만 모델에 의한 에지톤의 수치계산

Numerical Simulation of Edge Tone by Finite Difference Lattice Boltzmann Model with Internal Degree of Freedom

  • 강호근 (경상대학교 기계항공공학부 해양산업연구소) ;
  • 김은라 (전북대학교 토목공학과) ;
  • 오세경 (경상대학교 기계항공공학부)
  • 발행 : 2005.11.01

초록

A lattice BGK model based on a finite difference scheme with an internal degree of freedom is employed and it is shown that a diatomic 9as such as air is successfully simulated In a weak compressive wane problem and Coutte flow, the validity and characteristics of the applied model are examined. With the model. furthermore. we present a 2-dimensional edge tones to predict the frequency characteristics of discrete oscillations of a jet-edge feedback cycle by the FDLB model (I.D.F FDLBM) in which any specific heat ratio $\gamma$ can be chosen freely. The jet is chosen long enough in order to guaranteed the Parabolic velocity profile of a jet at the outlet. and the edges have of an angle of $\alpha$=$23^{0}$ and $20^{0}$. A sinuous instability wane with real frequency resulting from Periodic oscillation of the jet around the edge is propagated on the upper and lower of wedge.

키워드

참고문헌

  1. S. Wolfram, 'Cellular Automaton Fluids 1: Basic Theory,' J. Stat. Phys., Vol. 45, pp. 471-526, 1986 https://doi.org/10.1007/BF01021083
  2. U. Frisch, B. Hasslacher and Y. Pomeau, 'Lattice Gas Automata for the Navier-Stokes Equations,' Complex Systems 1. pp. 649-707, 1987
  3. Y.H. Qian, S. Succi and S.A. Qrszag, 'Recent Advances in Lattice Boltzmann Computing,' Ann. Rev. Comp. Phy. III, D. Stauffer ed. World Scientific. 1995
  4. N. Cao, S. Chen, S. Jin and D. Martinez, 'Physical Symmetry and Lattice Symmetry in the Lattice Boltzmann Method,' Phys. Rev. E, Vol. 55, pp. R21-R24, 1997 https://doi.org/10.1103/PhysRevE.55.R21
  5. N. Takada and M. Tsutahara, 'Proposal of Lattice BGK Model with Internal Degrees of Freedom in Lattice Boltzmann Method,' Trans. JSME J., B, Vol. 65, No.629, pp. 92-99, 1999
  6. M. Tsutahara, T. Kataoka, N. Takada, H.K. Kang and M. Kurita, 'Simulations of Compressible Flows by Using the Lattice Boltzmann and the Finite Difference Lattice Boltzmann Methods,' Comp. Fluid Dyna. J., Vol.11, No.1, pp. 489-493, 2003
  7. H.K. Kang, M. Tsutahara, K.D. Ro and Y.H. Lee, 'Numerical Simulation of Shock Wave Propagation Using the Finite Difference Lattice Boltzmann Method,' KSME Intl. J., Vol. 16, No. 10, pp. 1327-1335, 2002
  8. O. Inoue and N. Hatakeyama, 'Sound Generation by a Two-Dimensional Circular Cylinder in a Uniform Flow,' J. Fluid Mech., Vol. 471, pp. 285-314, 2002
  9. D.K. Holger, T.A. Wilson and G.S. Beavers, 'Fluid Mechanics of the Edgetons,' J. Acoust. Soc. Am., Vol. 62, No. 5, pp. 1116-1128, 1977 https://doi.org/10.1121/1.381645
  10. D. Rockwell, 'Vortex-Body Interaction,' Ann. Rev. Fluid Mech., Vol. 30, pp. 199-229, 1998 https://doi.org/10.1146/annurev.fluid.30.1.199
  11. B. Sahin, H. Akilli, J.C. Lin and D. Rockwell, 'Vortex Breakdown-Edge Interaction: Consequence of Edge Oscillations,' AIAA J., Vol. 39, No. 5, pp. 865-876, 2001 https://doi.org/10.2514/2.1390
  12. H.K. Kang and E.R. Kim, 'On Implementation of the Finite Difference Lattice Boltzmann Method with Internal Degree of Freedom to Edgetone,' J. Mech. Sci.& Tech., Vol. 19, No. 11, pp. 2032-2039, 2005 https://doi.org/10.1007/BF02916496
  13. H.K. Kang, M. Tsutahara, K. Shikata, E.R. Kim and Y.H. Lee, 'Computation of Aerodynamic Sounds at Low Mach Numbers Using Finite Difference Lattice Boltzmann Method,' J. Comput. Fluids Eng., Vol. 10, No. 1, pp. 8-15, 2005