DOI QR코드

DOI QR Code

Optimization of Extraction Conditions for Cabbage

홍월적 양배추의 추출조건 최적화

  • 도정룡 (한국식품연구원) ;
  • 김현구 (한국식품연구원) ;
  • 홍주헌 (대구신기술사업단 전통생물소재산업화센터) ;
  • 이기동 (대구신기술사업단 전통생물소재산업화센터)
  • Published : 2005.12.01

Abstract

This study was conducted to monitor the extraction yields and functional properties from cabbage by a response surface methodology. The extract yield was maximized as 44.47$\%$ under the temperature of 79.86$^{\circ}C$, ethanol concentration of 56.84$\%$ and solvent to sample ratio 25.58 mL/g . The maximum value of electron donating ability was 85.46$\%$ at 46.38$^{\circ}C$,57.06$\%$ of ethanol concentration and 27.71 mL/g of solvent to sample ratio. The maximum value of tyrosinase inhibitory effect was 69.37$\%$ at 37.5$^{\circ}C$,47.71$\%$ of ethanol concentration and 16.03 mL/g of solvent to sample ratio. The maximum value of SOD-like activity was 48.36$\%$ in 66.12$^{\circ}C$, 70.35$\%$ of ethanol concentration and 29.13 mL/g of solvent to sample ratio. Estimated conditions for the maximized extraction including yield, electron donating ability and SOD-like activity were 20 $\∼$ 30 mL/g in ratio of solvent to sample, 25$\∼$85$\%$ in ethanol concentration, and 40$\∼$90$^{\circ}C$ in extraction temperature.

양배추(홍월적) 추출물의 추출수율과 기능성을 최적화하고자 반응표면분석법을 이용하여 모니터링하였다. 추출조건에 따른 수율의 최대값은 44.47$\%$로 시료에 대한 용매비 25.58 mL/g, 에탄올 농도 56.84$\%$ 및 추출온도 79.86$^{\circ}C$였으며, 전자공여능의 최대값은 85.46$\%$로 시료에 대한 용매비 27.71 mL/g, 에탄올 농도 57.06$\%$ 및 추출온도 46.38$^{\circ}C$일 때였다. 또한 tyrosinase 저해효과는 시 료에 대한 용매비 16.03 mL/g, 에탄올 농도 47.71$\%$및 추출온도 37.50$^{\circ}C$일 때 최대값 69.37$\%$를 나타내었다. 아질산염 소거능은 pH 1.0에서 가장 높은 값을 나타내었으며, 최대값은 99.52$\%$이었으며, SOD 유사활성의 최 값은 48.36$\%$로 이 때의 추출조건은 시료에 대한 용매비 29.13 mL/g, 에탄올 농도 70.35$\%$ 및 추출온도 66.12$^{\circ}C$였다. 조건별 추출물의 수율, 전자공여능, SOD 유사활성에 대한 4차원 반응표면을 superimposing하여 얻은 최적 추출조건 범위는 시료에 대한 용매비 20$\∼$30 mL/g, 에탄올 농도 25$\∼$85$\%$, 추출온도 40$\∼$90$\%$로 나타났다.

Keywords

References

  1. Stoewsand GS. 1995. Bioactive organosulfur phytoche : micals in Brassica oleracea vegetables. a review. Food Chem Toxic 33: 537-543 https://doi.org/10.1016/0278-6915(95)00017-V
  2. Lee SM, Rhee SH,. Park KY. 1997. Antimutagenic effect of various Cruciferous vegetables in Salonella assaying system. J Food Hyg Safety 12: 321-327
  3. Sorensen M, Jensen BR, Poulson HE, Deng XS, Tysdtrup N, Dalhoff K, Loft S. 2001. Effects of a brussels sprouts extract on oxidative DNA damage and metabolising enzymes in rat liver. Food Chem Toxic 39: 533-540 https://doi.org/10.1016/S0278-6915(00)00170-8
  4. Zhu C, Poulson HE, Loft S. 2000. Inhibition of oxidative DNA damage in vitro by extracts brussels sprouts. Free Rad Res 33: 187-196 https://doi.org/10.1080/10715760000300741
  5. Plumb GW, Chambers SJ, Lambert N, Wanigatunga S, Williamson G. 1997. Influence of fruit and vagetable extracts on lipid peroxidation in microsome containing specific cytochrome P450s. Food Chem 60: 161-164 https://doi.org/10.1016/S0308-8146(95)00256-1
  6. Thompson HC, Kelly WC. 1959. Vegetables crops. 5th ed. Mcgraw-hill book company,. Inc., New York, USA. p 275-595
  7. Rice-Evans CA, Miller NJ, Paganga G. 1997. Antioxidant properties of phenolic compounds: a review. Trends Plant Sci 2: 152-159 https://doi.org/10.1016/S1360-1385(97)01018-2
  8. Rice-Evans CA, Miller NJ, Paganga G. 1996. Structureantioxidant activity relationships of flavonoids and phenolic acids. Review article. Free Radical Biol Med 20: 933-956 https://doi.org/10.1016/0891-5849(95)02227-9
  9. Gontard N, Guilbert S, Cuq JL. 1992. Edible wheat gluten films: Influence of the main process variables on film properties using response surface methodology. J Food Sci 57: 190-196 https://doi.org/10.1111/j.1365-2621.1992.tb05453.x
  10. Lee GD, LeeJE, Kwon JR. 2000. Application of response surface methodology in food industry. Food Ind 33: 33-45
  11. SAS Institute, Inc. 1990. SAS User's Guide. Statistical Analysis Systems Institute, Cary, NC, USA
  12. AOAC. 1990. Official methods of analysis. 15th ed. Association of official analytical chemists, Washington DC, USA. p 1010-1011
  13. Kang YR, Park YK, Lee GD. 1996. The nitrite scavenging and electron donating ability of phenolic compounds. Korean J Food Sci Technol 28: 232-239
  14. Wong TC, Luh BS, Whitaker JR. 1971. Isolation and characterization of polyphenoloxidase of clingstone peach. Plant Physiol 48: 19-23 https://doi.org/10.1104/pp.48.1.19
  15. Gray JI, Dugan Jr LR. 1975. Inhibition of N -nitrosamine formation in model food system. J Food Sci 40: 981-984 https://doi.org/10.1111/j.1365-2621.1975.tb02248.x
  16. Kim SM, Cho YS, Sung SK.2001.The antioxidant ability and nitrite scavenging ability of plant extracts. Korean J Food Sci Technol 33: 626-632
  17. Park NY, Lee GD, Jeong YJ, Kwon JH. 1998. Optimization of extraction conditions for physicochemical properties of ethanol extracts from Chrysanthemum boreale. J Korean Soc Food Sci Nutr 27: 585-590
  18. Blois MS. 1958.. Antioxidant determination by the use of a stable free radical. Nature 26: 1199-1204
  19. Yoon SR, Jeong YJ, Lee GD, Kwon JR. 2003. Changes in phenolic compounds properties of Rubi Fructus extract depending on extraction conditions. J Korean Soc Food Sci Nutr 32: 338-345 https://doi.org/10.3746/jkfn.2003.32.3.338
  20. Jung S, Lee N, Kim SJ, Ran D. 1995. Screening of tyrosinase inhibitor from plants. Korean J Food Sci Technol 27: 891-896
  21. Noh KS, Yang MO, Cho EJ. 2002. Nitrite scavenging effect of Umbelliferaeceae. Korean J Soc Food Cookery Sci 18: 8-12
  22. Davies R, Massey RC, McWeeny DJ. 1980. The catalysis of the N-nitrosamine of secondary amines by nitrosophenols. J Food Chem 6: 115-122 https://doi.org/10.1016/0308-8146(80)90027-8
  23. Kang YR, Park YK, Lee GD. 1996. The nitrite scavenging and electron donating ability of phenolic compounds. Korean J Food Sci Technol 28: 232-239
  24. Kim SM, Cho YS, Sung SK, Lee IG, Lee SR, Kim DG. 2002. Antioxidative and nitrite scavenging activity of pine needle and green tea extracts. Korean J Food Sci Ani Resour 22: 13-19
  25. Kim DS, Ahn BW, Yeum DM, Lee DR, Kim SB, Park YH. 1987. Degradation of carcinogenic nitrosamine formation factor by natural food components. 1. Nitrite scavenging effect of vegetable extracts. Bull Korean Fish Soc 20: 463-468
  26. Kim SB, Ahn BW, Yeum DM, Lee DR, Park YR, Kim DS. 1987. Degradation of carcinogenic nitrosamine formation factor by natural food components. 2. Nitrite scavenging effect of seaweed extracts. Bull Korean Fish Soc 20: 469-473
  27. Lee SJ, Chung MJ, Shin JR, Sung NJ. 2000. Effect of natural plant components on the nitrite-scavenging. J Food Hyg Safety 15: 88-94
  28. Kim SM, Kim EJ, Cho YS, Sung SK. 1999. Antioxidant of pine extracts according to preparation method. Korean J Food Sci Technol 31: 527-534

Cited by

  1. Optimization of Ethanol Extraction Conditions for Functional Components from Lespedeza cuneata Using Response Surface Methodology vol.28, pp.3, 2012, https://doi.org/10.9724/kfcs.2012.28.3.275
  2. Optimization of Extraction Conditions for Ethanol Extracts from Citrus unshiu Peel by Response Surface Methodology vol.18, pp.5, 2011, https://doi.org/10.11002/kjfp.2011.18.5.755
  3. Optimization of Extraction Conditions for Mate (Ilex paraguarensis) Ethanolic Extracts vol.18, pp.3, 2011, https://doi.org/10.11002/kjfp.2011.18.3.319