DOI QR코드

DOI QR Code

Transcriptional Activation and Repression of Cell Cycle Regulatory Molecules by Trichostatin A

Trichostatin A 처리에 의하 세포주기 조절인자들의 전사활성화 및 불활성화

  • Baek Jong-Soo (Department of Dentistry, College of Medicine, Yeungnam University) ;
  • Lee Hee-Kyung (Department of Dentistry, College of Medicine, Yeungnam University) ;
  • Cho Young-Su (Department of Biotechnolory, College of Natural Resources and Life Science) ;
  • Kim Sung-Young (Department of Food Science, Andong Science College) ;
  • Park Kwan-Kyu (Department of Pathology, Catholic University of Daegu School of Medicine) ;
  • Chang Young-Chae (Department of Pathology, Catholic University of Daegu School of Medicine)
  • 백종수 (영남대학교 의과대학 치과학교실) ;
  • 이희경 (영남대학교 의과대학 치과학교실) ;
  • 조영수 (동아대학교 생명자원과학대학 응용생명공학부) ;
  • 김성영 (안동과학대학 식품조리과) ;
  • 박관규 (동아대학교 생명자원과학대학 응용생명공학부) ;
  • 장영채 (대구가톨릭대학교 의과대학 병리학교실)
  • Published : 2005.12.01

Abstract

The dihydrofolate reductase (dhfr) promoter contains cis-acting element for the transcription factors Spl and E2F. Transcription of dhfr gene shows maximal activity during the Gl/S phase of cell cycle. The member of the Spl transcriptional factor family can act as both negative and positive regulators of gene expression. There was a report that Spl-Rb and E2F4-pl30 complexes cooperate to establish stable repression of dhfr gene expression in CHOC400 cells. Here, we examined the role of HDAC in dhfr, cyclin E, and cyclin A gene regulation using the histone deacetylation inhibitor, trichostatin A (TSA) in U2OS and C33A cells, a Rb-positive human osteosarcoma cell line, and a Rb-negative cervical carcinoma cell line, respectively. When the dhfr promoter constructs were applied in U2OS cells, TSA markedly stimulated over 14-fold of dhfr promoter activity through dhfr-Spl sites by the deletion of an E2F element. In contrast, the deletion of dhfr-Spl binding sites completely abolished promoter stimulation by TSA. The dhfr promoter activity including dhfr-Spl sites increased only 2-fold in C33A cells. Promoter activity containing only dhfr-E2F site did not have much effect by the treatment of TSA in both U2OS and C33A cells. On the other hand, treatment with TSA induced significantly mRNA expression of dhfr and cyclin E, whereas levels of cyclin A decreased in U2OS cells, but had no effect in C33A cells. These results indicate that TSA have contradictory effect, activation of dhfr and cyclin E genes on Gl phase, and down-regulation of cyclin A on G2 phase through transcriptional regulation in U2OS cells.

Dihydrofolate reductase (dhfr) promoter에는 전사 인자 Spl과 E2F가 결합하는 cis-acting 배열을 가지고 있다. dhfr 유전자의 전사는 세포 주기 Gl/S기 동안 최대의 발현을 나타낸다. 또한 Spl 전사 인자는 dhfr 유전자 발현의 활성화 및 불활성화를 조절하는 다양한 역할에 대한 연구가보고 되고 있으며, 최근 Spl-Rb과 E2F4-pl30 복합체가 CHOC400 세포에서 dhfr 유전자 발현에 안정한 형태를 형성하여 dhfr 발현을 억제한다는 연구 결과가 보고되었다. 본 연구에서는 Rb-양성 골육종 세포인 U2OS 및 Rb음성인 자궁경부암 C33A 세포에서 histon deacetylase (HDAC)에 대한 특이적인 저해제인 trichostatn A (TSA)를 처리한 후 세포주기 조절에 중심적 인자들인 dhfr cyclin E 및 cyclin A의 전사활성에 대한 HDACl의 기능을 조사하였다. U2OS 및 C33A 세포에서 TSA를 처리한 후, dhfr, cyclin E, cyclin A에 대한 mRNA 및 단백질 발현을 조사한 결과 U2OS 세포 특이적으로 dhfr cyclin E의 mRNA 발현과 단백질 발현이 크게 증가하였지만, cyclin A의 발현은 감소하였다. U2OS 세포에서 dhfr promoter construct에 대한 전사활성을 검사한 결과, TSA 처리는 dhfr promoter 영역으로부터 E2F 결합부위를 제거시킨 DHFR-Spl-luc를 통하여 dhfr promoter활성이 약 14배 증가되었다, 그러나 dhfr promoter 영역으로부터 Spl 결합부위를 제거시킨 DHFR-E2F-luc 영역을 포함하고 있는 promoter 활성은 TSA 처리에 의해 크게 증가되지 않았다. 본 연구에서 이러한 결과는 HDACI이 Spl을 통하여 dhfr promoter활성을 제어한다는 사실을 입증하였다. 한편 TSA는 U2OS 세포에서 HDAC의 활성을 통해서 세포주기 관련 인자들 가운데서 Gl 후기부터 활성화되는 대표적인 인자들인 dhfr과 cyclin E의 발현을 증가시키지만 G2 기에서 활성화되는 대표적인 인자인 cyclin A의 발현을 억제하는 상반된 기능을 가지고 있다는 사실을 확인하였다.

Keywords

References

  1. Black, A. R., Jensen, D., Lin, S. Y. and Azizkhan, J. C. 1999. Growth/cell cycle regulation of Sp1 phosphorylation. J. Biol. Chem 274(3), 1207-1215 https://doi.org/10.1074/jbc.274.3.1207
  2. Blake, M. C. and Azizkhan, J. C. 1989. Transcription factor E2F is required for efficient expression of the hamster dihydrofolate reductase gene in vitro and in vivo. Mol. Cell. Biol. 9(11), 4994-5002
  3. Blake, M. C., Jambou, R. C., Swick, A. G., Kahn, J. W. and Azizkhan, J. C. 1990. Transcriptional initiation is controlled by upstream GC-box interactions in a TATA-less promoter. Mol. Cell. Biol. 10(12), 6632-6641
  4. Brehm, A., Miska, E. A., McCance, D. J., Reid, J. L., Bannister, A. J. and Kouzarides, T. 1998. Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 391 (6667), 597-601 https://doi.org/10.1038/35404
  5. Chang, Y. C., Illenye, S. and Heintz, N. H. 2001. Cooperation of E2F-p130 and Sp1-pRb complexes in repression of the Chinese hamster dhfr gene. Mol. Cell. Biol. 21(4), 1121-1131 https://doi.org/10.1128/MCB.21.4.1121-1131.2001
  6. Ciudad, C. J., Morris, A. E., Jeng, C. and Chasin, L. A. 1992. Point mutational analysis of the hamster dihydrofolate reductase minimum promoter. J. Biol. Chem. 267(6), 3650-3656
  7. DeCaprio, J. A., Ludlow, J. W., Lynch, D., Furukawa, Y., Griffin, J., Piwnica-Worms, H., Huang, C. M. and Livingston, D. M. 1989. The product of the retinoblastoma susceptibility gene has properties of a cell cycle regulatory element. Cell 58(6), 1085-109 https://doi.org/10.1016/0092-8674(89)90507-2
  8. Doetzlhofer, A., Rotheneder, H., Lagger, G., Koranda, M., Kurtev, V., Brosch, G., Wintersberger, E. and Seiser, C. 1999. Histone deacetylase 1 can repress transcription by binding to Sp1. Mol. Cell. Biol. 19, 5504-5511
  9. Eickhoff, B., Ruller, S., Laue, T., Kohler, G., Stahl, C., Schlaak, M. and van der Bosch, J. 2000. Trichostatin A modulates expression of p21waf1/cip1, Bcl-xL, ID1, ID2, ID3, CRAB2, GATA-2, hsp86 and TFIID/TAFII31 mRNA in human lung adenocarcinoma cells. Biol. Chem 381(2), 107-112 https://doi.org/10.1515/BC.2000.015
  10. Farnham, P. J. and Schimke, R. T. 1985. Transcriptional regulation of mouse dihydrofolate reductase in the cell cycle. J. Biol. Chem 260(12), 7675-7680
  11. Farnham, P. J. and Schimke, R. T. 1986. Murine dihydrofolate reductase transcripts through the cell cycle. Mol. Cell. Biol. 6(2), 365-371
  12. Ferrara, F. F., Fazi, F., Bianchini, A., Padula, F., Gelmetti, V., Minucci, S., Mancini, M., Pelicci, P. G., Lo Coco, F. and Nervi, C. 2001. Histone deacetylase-targeted treatment restores retinoic acid signaling and differentiation in acute myeloid leukemia. Cancer Res. 61(1), 2-7
  13. Finnin, M. S., Donigian, J. R., Cohen, A., Richon, V. M., Rifkind, R. A., Marks, P. A. and Breslow Rand Pavletich, N. P. 1999. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 401, 188-193 https://doi.org/10.1038/43710
  14. Han, J. W., Ahn, S. H., Kim, Y. K., Bae, G. U., Yoon, J. W., Hong, S., Lee, H. Y., Lee, Y. W. and Lee, H. W. 2001. Activation of p21(WAF1/Cip1) transcription through Sp1 sites by histone deacetylase inhibitor apicidin: involvement of protein kinaseC. J. Biol. Chem 276(45), 42084-42090 https://doi.org/10.1074/jbc.M106688200
  15. Heinzel, T., Lavinsky, R. M., Mullen, T. M., Soderstrom, M., Laherty, C. D., Torchia, J., Yang, W. M., Brard, G., Ngo, S. D., Davie, J. R., Seto, E., Eisenman, R. N., Rose, D. W., Glass, C. K. and Rosenfeld, M. G. 1997. A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature 387(6628), 43-48 https://doi.org/10.1038/387043a0
  16. Hendrickson, S. L., Wu, J. S. and Johnson, L. F. 1980. Cell cycle regulation of dihydrofolate reductase mRNA metabolism in mouse fibroblasts. Proc. Natl. Acad. Sci. 77(9), 5140-5144
  17. Huang, L., Sowa, Y., Sakai, T. and Pardee, A. B. 2000. Activation of the p21WAF1/CIP1 promoter independent of p53 by the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) through the Sp1 sites. Oncogene 19(50), 5712-5719 https://doi.org/10.1038/sj.onc.1203963
  18. Jensen, D. E., Black, A. R., Swick, A.G. and Azizkhan, J. C. 1997. Distinct roles for Sp1 and E2F sites in the growth/cell cycle regulation of the DHFR promoter. J. Cell. Biochem 67(1), 24-31 https://doi.org/10.1002/(SICI)1097-4644(19971001)67:1<24::AID-JCB3>3.0.CO;2-Y
  19. Johnson, L. F., Fuhrman, C. L. and Wiedemann, L. M. 1978. Regulation of dihydrofolate reductase gene expression in mouse fibroblasts during the transition from the resting to growing state. J. Cell. Physiol 97(Suppl 1), 397-306 https://doi.org/10.1002/jcp.1040970314
  20. Johnstone, R. W. 2002. Histone-deacetylase inhibitors. Nat. Rev. Drug Discov. 1(4), 287-299 https://doi.org/10.1038/nrd772
  21. Kao, H. Y., Ordentlich, P., Koyano-Nakagawa, N., Tang, Z., Downes, M., Kintner, C. R., Evans, R. M. and Kadesch, T. 1998. A histone deacetylase corepressor complex regulates the Notch signal transductionpathway. Genes Dev. 12(15), 2269-2277 https://doi.org/10.1101/gad.12.15.2269
  22. Laherty, C. D., Yang, W. M., Sun, J. M., Davie, J. R., Seto, E., Eisenman, R. N. 1997. Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression. Cell 89(3), 349-356 https://doi.org/10.1016/S0092-8674(00)80215-9
  23. Marks, P. A., Richon, V. M., Breslow, R. and Rifkind, R. A. 2001. Histone deacetylase inhibitors as new cancer drugs. Curr. Opin. Oncol. 13(6), 477-483 https://doi.org/10.1097/00001622-200111000-00010
  24. Marks, P., Rifkind, R. A., Richon, V. M., Breslow, R., Miller, T. and Kelly, W. K. 2001. Histone deacetylases and cancer: causes and therapies. Nat. Rev. Cancer 1(3), 194-202 https://doi.org/10.1038/35106079
  25. Means, A. L., Slansky, J. E., McMahon, S. L., Knuth, M. W. and Farnham, P. J. 1992. The HIP1 binding site is required for growth regulation of the dihydrofolate reductase gene promoter. Mol. Cell. Biol. 12(3). 1054-1063
  26. Murata, Y., Kim, H. G., Rogers, K. T., Udvadia, A. J. and Horowitz, J. M. 1994. Negative regulation of Sp1 trans-activation is correlated with the binding ofcellular proteins to theamino terminus of the Sp1 trans-activation domain. J. Biol. Chem. 269(32), 20674-20681
  27. Nakano, K., Mizuno, T., Sowa, Y., Orita, T., Yoshino, T., Okuyama, Y., Fujita, T., Ohtani-Fujita, N., Matsukawa, Y., Tokino,T., Yamagishi, H., Oka, T., Nomura, H. and Sakai, T. 1997. Butyrate activates the WAF1/Cip1 gene promoter through Sp1 sites in a p53-negative human colon cancer cell line. J. Biol. Chem. 272(35), 22199-22206 https://doi.org/10.1074/jbc.272.35.22199
  28. Ng, H. H. and Bird, A. 1999. DNA methylation and chromatin modification. Curr. Opin. Genet. Dev. 9(2), 158-163 https://doi.org/10.1016/S0959-437X(99)80024-0
  29. Noe, V., Chen, C., Alemany, C., Nicolas, M., Caragol, I., Chasin, L. A. and Ciudad, C. J. 1997. Cell-growth regulation of the hamster dihydrofolate reductase gene promoter by transcription factor Sp1. Eur. J. Biochem. 249(1), 13-20 https://doi.org/10.1111/j.1432-1033.1997.00013.x
  30. Saito, A., Yamashita, T., Mariko, Y., Nosaka, Y., Tsuchiya, K., Ando, T., Suzuki, T., Tsuruo, T. and Nakanishi, O. 1999. A synthetic inhibitor of histone deacetylase, MS-27-275, with marked in vivo antitumor activity against human tumors. Proc. Natl. Acad. Sci. 96(8), 4592-4597
  31. Santiago, C., Collins, M. and Johnson, L. F. 1984. In vitro and in vivo analysis of the control of dihydrofolate reductase gene transcription in serum-stimulated mouse fibroblasts. J. Cell. Physiol. 118(1), 79-86 https://doi.org/10.1002/jcp.1041180114
  32. Slansky, J. E., Li, Y., Kaelin, W. G. and Farnham, P. J. 1993. A protein synthesis-dependent increase in E2F1 mRNA correlates with growth regulation of the dihydrofolate reductase promoter. Mol. Cell. Biol. 13(3), 1610-1618
  33. Sowa, Y., Orita, T., Minamikawa, S., Nakano, K., Mizuno, T., Nomura, H. and Sakai, T. 1997. Histone deacetylase inhibitor activates the WAF1/Cip1 gene promoter through the Sp1 sites. Biochem. Biophys. Res. Commun. 241(1), 142-150 https://doi.org/10.1006/bbrc.1997.7786
  34. Vigushin, D. M. and Coombes, R. C. 2002. Histone deacetylase inhibitors in cancer treatment. Anticancer Drugs 13(1), 1-13 https://doi.org/10.1097/00001813-200201000-00001
  35. Vigushin, D. M., Ali, S., Pace, P. E., Mirsaidi, N., Ito, K., Adcock, I. and Coombes, R. C. 2001. Trichostatin A is a histone deacetylase inhibitor with potent antitumor activity against breast cancer in vivo. Clin. Cancer Res. 7(4), 971-976
  36. Wade, M., Kowalik, T. F., Mudryj, M., Huang, E. S. and Azizkhan, J. C. 1992. E2F mediates dihydrofolate reductase promoter activation and multiprotein complex formation in human cytomegalovirus infection. Mol. Cell. Biol. 12(10), 4364-4374
  37. Wade, P. A., Pruss, D. and Wolffe, A. P. 1997. Histone acetylation: chromatin in action. Trends Biochem. Sci. 22(4), 128-132 https://doi.org/10.1016/S0968-0004(97)01016-5
  38. Wells, J. M., Illenye, S., Magae, J., Wu, C. L. and Heintz, N. H. 1997. Accumulation of E2F-4.DP-1 DNA binding complexes correlates with induction of dhfr gene expression during the G1 to S phase transition. J. Biol. Chem. 272(7), 4483-4492 https://doi.org/10.1074/jbc.272.7.4483
  39. Wells, J., Held, P., Illenye, S. and Heintz, N. H. 1996. Protein-DNA interactions at the major and minor promoters of the divergently transcribed dhfr and rep3 genes during the Chinese hamster ovary cell cycle. Mol. Cell. Biol. 16(2), 634-647
  40. Won, J., Yim, J. and Kim, T. K. 2002. Opposing regulatory roles of E2F in human telomerase reverse transcriptase (hTERT) gene expression in human tumour and normal somatic cells. FASEB J. 16, 1943-1945
  41. Yoshida, M., Furumai, R., Nishiyama, M., Komatsu, Y., Nishino, N. and Horinouchi, S. 2001. Histone deacetylase as a new target for cancer chemotherapy. Cancer Chemother. Pharmacol. 48(Suppl 1), 20-26 https://doi.org/10.1007/s002800100300
  42. Zhang, H. S., Gavin, M., Dahiya, A., Postigo, A. A., Ma, D., Luo, R. X., Harbour, J. W. and Dean, D. C. 2000. Exit from G1 and S phase of the cell cycle is regulated by repressor complexes containing HDAC-Rb-hSWI/SNF and Rb-hSWI/SNF. Cell 101(1), 79-89 https://doi.org/10.1016/S0092-8674(00)80625-X