DOI QR코드

DOI QR Code

Effect of Lead Exposure During Lactational Period on Anxiety in Rat Using Elevated Plus Maze Test

수유기동안 납 투여가 성숙 쥐의 불안감 관련 행동양상에 미치는 영향

  • Lim Sun-Young (Division of Marine Environment & Bioscience, Korea Maritime University)
  • 임선영 (한국해양대학교 해양환경생명과학부)
  • Published : 2005.12.01

Abstract

Lead (Pb) exposure during development can produce neurological deficits. In this study, the effect of Pb exposure during neonatal development via lactation on anxiety of brain function was investigated. Long-Evans strain rats were raised through two generations. At the birth of the second generation, the dams were subdivided into two groups and supplied drinking water containing either $0.2\%$ Pb (Pb-treated group) or sodium (Na, Control group) acetate until weaning. Rats were sacrificed at 3 (weaning) and 11 weeks (maturity) for brain Pb and fatty acid analysis. Motor activity and elevated plus maze tests were initiated at 9 weeks. The brains in the Pb-treated group at weaning and maturity contained 1486$\pm$98 and $270{\pm}46$ ng Pb/g, respectively The control group showed the background level of Pb ($3.7{\pm}1.0_{ng}$ Pb/g) in both ages. The alterations in brain fatty acid composition induced by Pb exposure were more evident in 3 wks old than 11 wks old. For example, in 3 wks old, the percentages of $18:2_{n-6}$, $20:2_{n-6}$ and $18:2_{n-6}$ were decreased in the Pb-treated group with an increase in $20:4_{n-6}$ In motor activity test, there was a tendency of hyperactivity in the Pb-treated group compared with the control group but the difference was not significant. In elevated plus maze test, the Pb-treated group showed fewer numbers of visits to the open arms (P < 0.05), indicating that Pb exposure may lead to anxiogenic effect.

수유기 동안 납의 투여는 급격한 체중의 변화를 유발하여 3주령 및 11주령 쥐의 경우 납을 투여한 군이 대조군에 비해 각각 50% 및 26% 체중 감소를 보였으나 뇌의 무게에는 유의적 변화를 관찰 할 수 없었다. 납 투여는 뇌 지방산 조성 변화에 큰 영향을 주지 않았지만 특히 AA와 DPAn-6와 같은 고도의 불포화 지방산 함량의 증가를 유발하였다. Motor ac-tivity 실험에서 납 투여군의 경우 대조군에 비하여 주어진 시간 내에서 움직이는 시간과 움직인 거리가 긴 것으로 보아 운동 활동성이 큰 것으로 여겨지나 두 군 간에 유의적 차이는 없었다. Elevated plus maze 실험에서 실험 1일째의 경우 open arm에 머무른 시간에는 유의적 차이가 없었으나 2일째에는 두 군에서 현저히 open arm에 머무른 시간이 감소하였으며 납 투여군의 경우 대조군에 비하여 머무른 시간이 감소하는 경향이었으나 통계적 유의성은 없었다. Open arm에 들어가는 횟수를 관찰한 결과, 실험 1일째의 경우 open arm에 들어가는 횟수가 납 투여군에서 유의적으로 적었고 2일째에는 두 군에서 모두 open arm에 들어가는 횟수가 감소하였으며 대조군에 비해 납을 투여한 쥐의 경우가 유의적으로 낮은 횟수로 open arm에 들어갔음을 관찰 할 수 있었다. 이상의 결과로부터 수유기 동안의 납 투여는 성숙 동물의 불안감을 증가시키는 효과를 나타내었다.

Keywords

References

  1. Ahmad, A., T. Moriguchi and N. Salem. 2002. Decrease in neuro size in docosahexaenoic acid-deficient brain. Pediatr. Neurol. 26, 210-218 https://doi.org/10.1016/S0887-8994(01)00383-6
  2. Banks, E. C., L. E. Ferretti and D. W. Shucard. 1997. Effects of low level lead exposure on cognitive function in children: a review of behavioral, neuropsychological and biological evidence. Neurotoxicol. 18, 237-281
  3. Calderon, F.and H. Y. Kim. 2004. Docosahexaenoic acid promotesneurite growth in hippocampalneurons. J. Neurochem. 90,979-988 https://doi.org/10.1111/j.1471-4159.2004.02520.x
  4. Carobrez, A. P. and L. J. Bertoglio. 2005. Ethological and temporal analyses of anxiety-like behavior: The elevated plusmaze model 20years on. Neurosci. Biobehav. Rev. 29,1-13 https://doi.org/10.1016/j.neubiorev.2004.11.002
  5. Charon, S., S. Vancassel, L. Zimmer, D. Guilloteau and G. Durand. 2001. Polyunsaturated fatty acids and cerebral function: focus on monoaminergic neurotransmission. Lipids 36, 937-944 https://doi.org/10.1007/s11745-001-0804-7
  6. Donaldson, W. E. and T. K. Leeming. 1984. Dietary lead: effects on hepatic fatty acid composition in chicks. Toxicol. Appl. Pharmacol. 73, 119-123 https://doi.org/10.1016/0041-008X(84)90060-7
  7. Dubas, T. C. and P. D. Hrdina. 1978. Behavioural and neurochemical consequences of neonatal exposure to lead in rats. J. Environ. Pathol. Toxicol. 2, 471-484
  8. Estefania, G. M., L. Vassilieff and V. S. Vassilieff. 2001. Developmental lead exposure: behavioral alterations in the short and long term. Neurotoxicol. Terratol. 23,489-495 https://doi.org/10.1016/S0892-0362(01)00159-3
  9. File, S. E., H. Zangrossi, M. Viana and F. G. Graeff. 1993. Trial 2 in the elevated plus-maze: a different form of fear? Psychopharmacology (Berl) 111, 491-494 https://doi.org/10.1007/BF02253541
  10. File, S. E.and L. E. Gonzalez. 1996. Anxiolytic effects in the plus-maze of 5-HTlA-receptorligands in dorsal raphe and ventral hippocampus. Pharmacol. Biochem. Behav. 54, 123-128 https://doi.org/10.1016/0091-3057(95)02108-6
  11. Finkelstein, Y., M. E. Markowitza and J. F. Rosen. 1998. Low-level lead-induced neurotoxicity in children: an update on central nervous system effects. Brain Res. Rev. 27, 168-176 https://doi.org/10.1016/S0165-0173(98)00011-3
  12. Folch, J., M. Lees and G. Sloane-Stanley.1957.Asimple method for the isolation and purification of total lipid from boron fluoride-methanol. J. Biol. Chem. 226,495-509
  13. Garavan, H., R. E. Morgan, D. A. Levisky, L. Hermer-Vazquez and B.J. Strupp. 2000. Enduring effects of early lead exposure: evidence for a specific deficit in associative ability. Neuratoxicol. Teratol. 22,151-164 https://doi.org/10.1016/S0892-0362(99)00057-4
  14. Gilbert, M. E. and C. M. Mack. 1998. Chronic lead exposure accelerates decay of long-term potentiation in rat dentate gyrus in vivo. Brain Res. 789,139-149 https://doi.org/10.1016/S0006-8993(97)01517-5
  15. Gilbert, M. E., C. M. Mack and S. M. Lasley. 1999.The influence of developmental period of lead exposure on long-term potentiation in the adult rat dentate gyrus in vivo. Neuratoxicology 20, 57-69
  16. Gordon, J.M., A. Taylor and P. N. Bennett. 2001. Lead poisoning: case studies. Br. J. Clin. Phamacol. 53, 451-458
  17. Graeme, K. A and C. V. Pollack. 1998.Heavy metal toxicity, Part 2: Lead and metal fume fever. J. Emergency Med. 16, 171-177 https://doi.org/10.1016/S0736-4679(97)00283-7
  18. Hammond, P. B. and P. A. Succop. 1995. Effect of supplemental nutrition on lead-induced depression of growth and food consumption in weanling rats. Toxicol. Applied Pharmacal. 131,80-84 https://doi.org/10.1006/taap.1995.1049
  19. Hibbeln, J. R. and N. Salem. 2001. Omega-3 fatty acids and psychiatric disorders. pp 3-22, In Mostofsky et al. (eds.), Fatty acids. Humana Press Inc., Totowa
  20. Hilson, J. A. and B. J. Strupp. 1997. Analyses of response patterns clarify lead effects in olfactory reversal and extradimensional shift tasks: assessment of inhibitory control, associative ability, and memory. Behavioral Neurosci. 111, 532 https://doi.org/10.1037/0735-7044.111.3.532
  21. Hong, C.M. 2001. Effectof repeated exposure to Pb acetate on hematopoietic function, testis and kidney in male rats. J. Toxicol. Pub. Health 17, 309-316
  22. Hong, C.M.,C.Y.Yoon, Y.Y. Cho, J. J. Hong, J. Y. Song, J. H. Yang, D. H. Cho, C.H. Chae, M. H. Cho, K. H. Yang and C.K Kim. 2000. Age effects of repeated exposure to lead acetate on pathological changes in male rats. Ann. Report KFDA. 4, 456-466
  23. Huang, F. and J. S. Schneider. 2004. Effects of lead exposure on proliferation and differential of neural stem cell derived from different regions of embryonic rat brain. Neuro Toxicol. 25, 1001-1012
  24. Jett, D. A., A. C. Kuhlmann, S. J. Farmer and T. R. Guilarte. 1997. Age-dependent effects of developmental lead exposure on performance in the Morris water maze. Pharmacol. Biochem. Behav. 57, 271-279 https://doi.org/10.1016/S0091-3057(96)00350-4
  25. Knowles, S. O. and W. E. Donaldson. 1996. Dietary lead alters fatty acid composition and membrane peroxidation in chick liver microsomes. Poult. Sci. 75, 1498-1500 https://doi.org/10.3382/ps.0751498
  26. Knowles, S. O., W. E. Donaldson and J. E. Andrews. 1998. Changes in fatty acid composition of lipids from birds, rodents, and preschool children exposed to lead. Biol. Trace Elem. Res. 61, 113-125 https://doi.org/10.1007/BF02784024
  27. Kuhlmann, A. C., J. L. McGlothan and T. R. Guilarte. 1997. Developmental lead exposure causes spatial learning deficits in adult rats. Neurosci. Lett. 233, 101-104 https://doi.org/10.1016/S0304-3940(97)00633-2
  28. Kwon, O. D. 2000. Histopathologic studies on the experimental lead poisioning in rats. Kor. J. Vet. Clin. Med. 17, 70-75
  29. Lasley, S. M., M. C. Green and T. R. Gilberte. 1999. Influence of exposure period on in vivo hippocampal glutamate and GABA release in rats chronically exposured to lead. Neurotoxicology 20, 619-629
  30. Lawton, L. J. and W. E. Donaldson. 1991. Lead-induced tissue fatty acid alterations and lipid peroxidation. Biol. Trace Elem. Res. 28, 83-97 https://doi.org/10.1007/BF02863075
  31. Morgan, R. E., H. Garavan, E. G. Smith, L. L. Driscoll, D. A. Levitsky and B. J. Strupp. 2001. Early lead exposure produces lasting changes in sustained attention, response initiation, and reactivity to errors. Neurotoxicol. Teratol. 23, 519-531 https://doi.org/10.1016/S0892-0362(01)00171-4
  32. Morrison, W. R. and L. M. Smith. 1959. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron-fluoride-methanol. J. Lipid Res. 5, 600-608
  33. Murphy, K. J. and C. M. Regan. 1999. Low-level lead exposure in the early postnatal period results in persisting neuroplastic deficits associated with memory consolidation. J. Neurochem. 72, 2099-2104 https://doi.org/10.1046/j.1471-4159.1999.0722099.x
  34. Nihei, M. K., N. L. Desmond, J. L. McGlothan, A. C. Kuhlmann and T. R. Guilarte. 2000. N-methyl-D-asparate receptor subunit changes are associated with lead-induced deficits of long-tem potentiation and spatial learning. Neuroscience 99, 233-242 https://doi.org/10.1016/S0306-4522(00)00192-5
  35. Niu, S. L., D. C. Mitchell, S-Y. Lim, Z. M. Wen, H. Y. Kim, N. Salem and B. J. Litman. 2004. Reduced G protein-coupled signaling efficiency in retinal rod outer segments in response to n-3 fatty acid deficiency. J. Biol. Chem. 279, 31098-31104 https://doi.org/10.1074/jbc.M404376200
  36. Osterode, W. and F. Ulberth. 2000. Increased concentration of arachidonic acid in erythrocyte membranes in chronically lead-exposed men. J. Toxicol. Environ. Health A 59, 87-95 https://doi.org/10.1080/009841000156998
  37. Park, J. R., M. Kim and Y. S. Lee. 2005. Effects of chitosan on the lead level and histological changes in rats exposured to various levels of lead. Kor. J. Nutr. 38, 48-55
  38. Pellow, S. and S. E. File. 1986. Anxiolytic and anxiogenic drug effects on exploratory activity in an elevated plus-maze: A novel test of anxiety in the rat. Pharmocol. Biochem. Behav. 24, 525-529 https://doi.org/10.1016/0091-3057(86)90552-6
  39. Reeves, P. G., F. H. Neilsen and G. C. Fahey. 1993. Committee report on the AIN-93 purified rodent diet. J. Nutr. 123, 1939-1951
  40. Salem, N., M., Reyzer and J. Karanian. 1996. Losses of arachidonic acid in rat liver after alcohol inhalation. Lipids 31, S153-156 https://doi.org/10.1007/BF02637068
  41. Sanchez-Fructuoso, A. I., J. Blanco, M. Cano, L. Ortega, M. Arroyo, C. Fernandez, D. Prats and A. Barrientos. 2002. Experimental lead nephropathy: treatment with calcium disodium ethylenediaminetetraacetate. Am. J. Kindey Dis. 40, 59-67 https://doi.org/10.1053/ajkd.2002.33936
  42. Sui, L., S. Y. Ge, D. Y. Ruan, J. T. Chen, Y. Z. Xu and M. Wang. 2000. Age-related impairment of long-term depression in area CA1 and dentate gyrus of rat hippocampus following developmental lead exposure in vivo. Neurotoxicol. Teratol. 22, 381-387 https://doi.org/10.1016/S0892-0362(00)00064-7
  43. Willson, M. A., M. V. Johnston, G. W. Goldstein and M. E. Blue. 2000. Neonatal lead exposure impairs development of rodent barrel field cortex. Proc. Natl. Acad. Sci. U. S. A. 97, 5540-5545
  44. Zimmermann, L., N. Pages, H. Antebi, A. Hafi, C. Boudene and L. G. Alcindor. 1993. Lead effect on the oxidation resistance of erythrocyte membrane in rat triton-induced hyperlipidemia. Biol. Trace Elem. Res. 38, 311-318 https://doi.org/10.1007/BF02785314