DOI QR코드

DOI QR Code

Saccharomyces cerevisiae세포 표면에 leucocin A유전자의 발현에 의한 항균활성 효모의 개발

Development of Bactericidal Yeast Strain by Expressing the Leucocin A Gene on the Cell Surface of Saccharomyces cerevisiae

  • Lee Sang-Hyeon (Department of Bioscience and Biotechnology, Silla University)
  • 발행 : 2005.12.01

초록

박테리오신의 일종인 Leucocin A를 생산하는 효모의 제작을 위하여 114 bp 길이의 종지코돈을 포함하는 Leucocin A 유전자를 합성하여 효모운반체인 pYDl에 클로닝하였다. 이렇게 제작된 재조합 DNA를 효모세포에 형질전환시켜 Leucocin A를 생산하는 형질전환 효모세포를 제작하였다. 형질전환 효모는 고초균(Bacillus subtilis)에 대해 항균활성을 나타냈다. 형질전환 효모로부터 분리한 플라스미드를 주형(template)으로 하고 Leucocin A에 특이적인 primer들을 이용하여 PCR 반응을 행한 결과, 효모에 도입된 Leucocin A 유전자를 확인할 수 있었다. 이 연구의 결과로 부패하기 쉬운 식품들의 보존성을 향상시키거나, 내성이 생긴 병원균의 생육을 저해하기 위한 항생제로 사용할 수 있는 박테리오신을 산업적으로 대량생산할 수 있는 효모세포를 제작하였다.

ln order to develop yeast cells that produce a bacteriocin on their cell surfaces, the 114 bp Leucocin A gene with stop codon was ligated into pYDl, an yeast vector. The recombinant DNA, pYDl-LeucoA was used to transform yeast (Saccharomyces cerevisiae) cells. Yeast cells harboring pYDl-LeucoA showed antibacterial activity against Bacillus subtilis. To confirm these bacteriocidal yeast cells possess the Leucocin A gone, PCR was performed with plasmid prepared from transformed yeast cells as a template and two Leucocin A-specific primers. In this study, bacteriocidal yeast cells that can be used as an antibiotic or a food preservative were developed.

키워드

참고문헌

  1. Dempsey, C. E. 1990. The actions of melittin on membranes. Biochim. Biophys. Acta 1031, 143-161 https://doi.org/10.1016/0304-4157(90)90006-X
  2. Federal register. 1988. Nisin preparation: affirmation of GRAS status as a direct human food ingradient. Fed. Regist. 54, 11247-11251
  3. Hastings, J. W., M., Saiter, K., Johnson, K. L., Ray, J. C., Vederas and M. E., Stiles. 1994. Characterization of leucocin A-VAL 187 and cloning of the bacteriocin gene from Leuconostoc gelidum. J. Bacteriol. 173, 7491c7500
  4. Hugenholtz, J. and G. J. C. M., de Veer. 1991. Application of nisin A and Z in dairy technology, p. 440-447, Nisin and novel lantibiotics. (Jung, G. and Sahl, H.-G. eds), Escom Publishers, Leiden, The Netherlands
  5. Jack, K. W., J. R., Tagg and B., Ray. 1995. Bacteriocins of Gram-positive bacteria. Microbiol. Rev. 59, 171-200
  6. Maloy, W. L. and U. P., Kari. 1995. Structure-activity studies on magainins and other host defense peptides. Biopolymers 37, 105-122 https://doi.org/10.1002/bip.360370206
  7. Mellor, I. R., D. H., Thomas and M. S. P., Samson. 1988. Properties of ion channels formed by Staphylococcus aureus delta-toxin. Biochim. Biophys. Acta 942, 280-294 https://doi.org/10.1016/0005-2736(88)90030-2
  8. Molitor, E. and H.-G., SahI. 1991. Application of nisin: a literature survey. p. 434-439. Nisin and novel lantibiotics. Escon Publishers, Leiden, The Netherlands
  9. Ray, B. and M, Daeschel. 1992. Food biopreservatives of microbiological origin. CRC Press, Inc., Boca Raton, Fla
  10. Stiles, M. E. and Hastings, J. W. (1991) Bacteriocin production by lactic acid bacteria: potential for use in meat preservation. Trends Food Sci. Technol. 2, 247-251 https://doi.org/10.1016/0924-2244(91)90706-O
  11. Ray B, R, Schamber and K. W. Miller. 1999. The pediocin AcH precursor is biologically active. Appl Environ Microbiol. 65, 2281-2286
  12. Wiedemann I, E, Breukink, C, van Kraaij, O. P., Kuipers, G., Bierbaum, B., de Kruijff and H. G., Sahl. 2001. Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. J BioI Chem. 276, 1772-1779 https://doi.org/10.1074/jbc.M006770200
  13. Zuber, P., M. M., Nakano and M. A, Marahiel. 1992. Bacillus subtilis and other Gram-positive bacteria. Biochemistry, Physiology, and Molecular Genetics (Sonenshein, A L., Hoch, J. A, and Losick, K, eds) pp. 897-916, American Society for Microbiology, Washington D. C