References
- Ardley H. C., C. C. Hung, and P. A. Robinson. 2005. The aggravating role of the ubiquitin-proteasome system in neurodegeneration. FEBS Lett. 579, 571-576 https://doi.org/10.1016/j.febslet.2004.12.058
- Cyr D. M., J. Hohfeld, and C.Patterson. 2002. Protein quality control: Ll-box-containing E3 ubiquitin ligases join the fold. Trends Biochem Sci. 27, 368-375 https://doi.org/10.1016/S0968-0004(02)02125-4
- Tanaka K. and T. Chiba. 1998. The proteasome: a protein-destroying machine. Genes Cells. 3, 499-510 https://doi.org/10.1046/j.1365-2443.1998.00207.x
- Hershko A. and A. Ciechanover. 1998. The ubiquitin system. Annu Rev Biochem. 67, 425-479 https://doi.org/10.1146/annurev.biochem.67.1.425
- Frydman J. 2001. Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem. 70, 603-647 https://doi.org/10.1146/annurev.biochem.70.1.603
- McClellan A. J., S. Tam, D. Kaganovich and J. Frydman. 2005. Protein quality control: chaperones culling corrupt conformations. Nat Cell BioI. 71 736-741
- Korhonen L.and D. Lindholm. 2004. The ubiquitin proteasome system in synaptic and axonal degeneration: a new twist to an old cycle. J Cell Biol. 165, 27-30 https://doi.org/10.1083/jcb.200311091
- Gandhi S. and N. W. Wood. 2005. Molecular pathogenesis of Parkinson's disease. Hum Mol Genet. 14, 2749-2755 https://doi.org/10.1093/hmg/ddi308
- Mizuno Y., N. Hattori, H. Mori, T. Suzuki and K. Tanaka. 2001. Parkin and Parkinson's disease. Curr Opin Neurol. 14, 477-482 https://doi.org/10.1097/00019052-200108000-00008
- Tsai Y. C. P. S. Fishman, N. V. Thakor and G. A. Oyler 2003. Parkin facilitates the elimination of expanded polyglutamine proteins and leads to preservation of proteasome function. J Bioi Chem. 278, 22044-22055 https://doi.org/10.1074/jbc.M212235200
- Shimura H., N. Hattori, S. Kubo, Y. Mizuno,S. Asakawa, S. Minoshima, N. Shimizu, K. Iwai, T. Chiba, K. Tanaka and T. Suzuki. 2000. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet. 25, 302-305 https://doi.org/10.1038/77060
- Morett E. and P. Bork P. 1999. A novel transactivation domain in parkin. Trends Biochem Sci. 24, 229-231 https://doi.org/10.1016/S0968-0004(99)01381-X
- Lim K. L., K. C. Chew, J. M. Tan, C. Wang, K. K. Chung, Y. Zhang, Y. Tanaka, W. Smith, S. Engelender, C. A.Ross, V. L. Dawson and T. M. Dawson. 2005. Parkin mediates nonclassical, proteasomal-independent ubiquitination of synphilin-l: implications for Lewy body formation. J Neurosci. 25, 2002-2009 https://doi.org/10.1523/JNEUROSCI.4474-04.2005
- Choi P., H. Snyder, L. Petrucelli, C. Theisler, M. Chong, Y. Zhang, K. Lim, K. K. Chung, K. Kehoe, L. D' Adamio, J. M. Lee, E. Cochran, R. Bowser, T. M. Dawson and B. Wolozin. 2003. SEPT5_v2 is a parkin-binding protein. Brain Res Mol Brain Res. 117, 179-189 https://doi.org/10.1016/S0169-328X(03)00318-8
- Corti O., C. Hampe, H. Koutnikova, F. Darios, S. Jacquier, A. Prigent, J. C. Robinson, L. Pradier, M. Ruberg, M. Mirande, E. Hirsch, T. Rooney, A. Fournier and A. Brice. 2003. The p38 subunit of the aminoacyl-tRNA synthetase complex is a Parkin substrate: linking protein biosynthesis and neurodegeneration. Hum Mol Genet. 12, 1427-1437 https://doi.org/10.1093/hmg/ddg159
- Huynh D. P., D. R. Scoles, D. Nguyen, S. M. Pulst. 2003. The autosomal recessive juvenile Parkinson disease gene product, parkin, interacts with and ubiquitinates synaptotagmin XI. Hum Mol Genet. 12, 2587-2597 https://doi.org/10.1093/hmg/ddg269
- Ren Y., J. Zhao, J. Feng. 2003. Parkin binds to alpha/beta tubulin and increases their ubiquitination and degradation. J Neurosci.23, 3316-3324
- Zhang Y., J. Gao, K. K. Chung, H. Huang, V. L. Dawson, T. M. Dawson. 2000. Parkin functions as an E2-dependent ubiquitin- protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc Natl Acad Sci USA. 97, 13354-13359
- Seong Y. M., H. J. Park, G. H Seong, J. Y. Choi, S. J. Yoon, B. R. Min, S. Kang and H. Rhim. 2004. N-terminal truncation circumvents proteolytic degradation of the human HtrA2/0mi serine protease in Escherichia coli: rapid purification of a proteolyticaTIy active HtrA2/Omi. Protein Expr Purif. 33, 200-208 https://doi.org/10.1016/j.pep.2003.10.002
- Huynh D. P., M. Dy, D. Nguyen, T. R. Kiehl, S. M. Pulst. 2001. Differential expression and tissue distribution of parkin isoforms during mouse development. Brain Res Dev Brain Res. 130, 173-181 https://doi.org/10.1016/S0165-3806(01)00234-6
- Kuhn K, X. R. Zhu, H. Lubbert and C. C. Stichel. 2004. Parkin expression in the developing mouse. Brain Res Dev Brain Res. 149, 131-142 https://doi.org/10.1016/j.devbrainres.2004.02.001
- Dagata V. and C. Sebastiano. 2004. Parkin transcript variants in rat and human brain. Neurochemical Research. 29, 1715-1724 https://doi.org/10.1023/B:NERE.0000035807.25370.5e
- Rechsteiner M. and S. W. Rogers. 1996. PEST sequences and regulation by proteolysis. Trends Biochem Sci. 21, 267271
- Murby M., M. Uhlen M and S. Stahl. 1996. Upstream strategies to minimize proteolytic degradation upon recombinant production in Escherichia coli. Protein Expr Purif. 7, 129-136 https://doi.org/10.1006/prep.1996.0018
- Kim H. S., J. S. Yoo, Y. G. Kim, C. H. Chung and Y. L. Choi. 1999. Cloning and Expression of Serratia marcescens Coenzyme A (CoA) Transferase Gene in E. coli. J. Life Science. 9, 54-57
- Finney N., F. Walther, P. Y. Mantel, D. Stauffer, G. Rovelli and K. K. Dev. 2003. The cellular protein level of parkin is regulated by its ubiquitin-like domain. J Bioi Chem. 278, 16054-1608 https://doi.org/10.1074/jbc.C300051200
Cited by
- Purification of Human HtrA1 Expressed in E. coli and Characterization of Its Serine Protease Activity vol.16, pp.7, 2006, https://doi.org/10.5352/JLS.2006.16.7.1133