DOI QR코드

DOI QR Code

Effects of Simulated Acid Rain on the Shoot Growth and Internal Tissue of Arabidopsis thaliana

애기장대의 shoot 생장과 내부조직에 미치는 인공산성비의 영향

  • 박종범 (신라대학교 자연과학대학 생물과학과)
  • Published : 2005.12.01

Abstract

This experiment was carried out to investigate the effects of simulated acid rain (SAR) in the shoot growth and internal structure of Arabidopsis thaliana. In the shoot growth, the plants treated with SAR (pH 3.0) for 15 days showed no morphological change compared to the control plants. Some change was observed in the internal structure of the stems: the epidermis and cortex tissues of the stems treated with SAR were partly damaged. The plants treated with SAR showed no noticeable difference compared to the control plants, but morphological changes were observed in the leaf. The leaves of the plants treated with SAR showed many white necrotic spots on the part of upper epidermis. A light microscopic examination of the leaves with necrotic spots showed that the upper epidermis was severely compressed with the damaged cuticle layer and the mesophyll cells were also damaged and compressed. However, noticeable structural change of vascular bundle cells was not observed.

인공산성비를 애기장대 (Arabidopsis thaliana)에 처리하였을 때 나타나는 줄기와 잎의 생장 변화와 내부구조의 형태변화를 광학현미경으로 관찰하였다. pH 3.0의 인공산성비를 애기장대에 15일 동안 직접 처리한 식물의 줄기 생장은 산성비를 처리하지 않은 정상식물의 줄기 생장과 거의 차이가 없었으며, 외형적인 형태변화도 관찰되지 않았다. 인공산성비를 처리한 식물 줄기의 내부구조는 정상식물 줄기에 비하여 표피조직과 피층 조직이 일부분 파괴되어 산성비에 의한 피해가 있었음이 관찰되었다. 인공산성비를 처리한 식물의 잎 생장은 정상식물 및 생장과 비교하여 차이가 거의 나타나지 않았으나, 외형적인 형태에서는 변화가 관찰되었다. 인공산성비를 처리한 식물의 잎 표면에서는 상표피의 많은 부위에서 흰 괴사반점이 뚜렸하게 관찰되었다. 인공산성비에 의하여 괴사반점이 나타난 잎의 내부조직을 광학현미경으로 관찰한 결과, 잎 표피세포는 큐티클층이 파괴되어 압착되었고 엽육 조직의 세포들도 역시 심하게 파괴되어 수축된 반면에 유관속 조직의 구조적 변화는 거의 관찰되지 않았다.

Keywords

References

  1. Binns, W. O. and D. B. Redfern. 1983. Acid rain and forest decline in West Germany. Forestry Commission Res. Dev. Paper 131, 13
  2. Davis, K. R. 1992. Arabidopsis thaliana as a model host for studying plant-pathogen interactions, In Molecular Signals in Plant-Microbe Communications. D.P.s. Verma (ed.), CRC Press Inc., Boca Raton, pp. 393-406
  3. Evans, L. S. and T. M. Curry. 1979. Differential responses of plant foliage to simulated acid rain. Am. J. Bot. 66, 953-962 https://doi.org/10.2307/2442237
  4. Evans, L. S., K. F. Lewin, E. M. Owen and K. A. Santucci. 1986. Comparison of yields of several cultivars of fieldgrown soybeans exposed to simulated acidic rainfall. New Phytol. 102, 409-417 https://doi.org/10.1111/j.1469-8137.1986.tb00818.x
  5. Feldmann, K. A. 1991. T-DNA insertion mutagenesis in Arabidopsis: mutational spectrum. The Plant Journal 1, 7182
  6. Ferenbaugh, R. W. 1976. Effect of simulated acid rain Phaseolus vulgaris L. (Fabaceae). Am. J. Bot. 63, 283-288 https://doi.org/10.2307/2441572
  7. Hindawi, I. J., J. A. Rea and W. L. Griffis. 1980. Response of bush bean exposed to acid mist. Am. J. Bot. 67, 168-172 https://doi.org/10.2307/2442639
  8. Johnston, J. W. Jr. and D. S. Shriner. 1985. Response of three wheat cultivars to simulated acid rain. Environ. Exp. Bot. 25, 349-353 https://doi.org/10.1016/0098-8472(85)90032-2
  9. Kim, G. T. 1986. Effects of simulated acid rain on growth and physiological characteristics of Ginkgo biloba L. seedling and on chemical properties of the tested soil. Seoul National Univ., Ph.D. Dissertation
  10. Kim, G. T. 1991. Effect of artificial acid rain on seed germination and seedling growth of several conifers. J. Korean For. Soc. 80, 237-245
  11. Kim, M. R. and W. Y. Soh. 1994. Growth response of Ginko biloba and Pinus thunbergii exposed on simulated acid rain. J. Plant Biology 37, 93-99
  12. Kim, M. R. and W. Y. Soh. 1995. Effect of simulated acid rain on foliar structural changes of Ginkgo biloba and Pinus thunbergii. J. Plant Biology 38, 79-86
  13. Knittel, R. and J. Pell. 1991. Effects of drought stress and simulated acid rain on foliar conductance of Zea mays L.. Environ. Exp. Bot. 31, 79-90 https://doi.org/10.1016/0098-8472(91)90010-L
  14. Larsen, B. R. 1986. In vivo buffering of simulated acid rain drops on leaves of selected crops. Water, Air, and Soil Pollut. 31, 401-407 https://doi.org/10.1007/BF00630857
  15. Lee, J. J., G. E. Neely, S. C. Perrigan and L. C. Grothaus. 1981. Effect of simulated sulfuric acid rain on yield, growth and foliar injury of several crops. Environ. Exp. Bot. 21, 171-185 https://doi.org/10.1016/0098-8472(81)90024-1
  16. Lee, K. H., G. C. Chung and J. S. Lee. 1993. Effects of simulated acid rain on stomatal resistance, wettability and anatomical changes in Quercus acutissima and Ginkgo biloba seedlings. J. Korean For. Soc. 82, 337-346
  17. Mohamed, M. B. 1978. Response of vegetable crops to acid rain under-field and simulated conditions. Ph. D. thesis. Cornell Univ., Ithaca, N.Y
  18. Paparozzi, E. T. and H. B. Tukey, Jr. 1983. Developmental and anatomicalchanges in leaves of yellow birch and red kidney bean exposed to simulated acid precipitation. J. Am. Soc. Hort. Sci. 108, 890-898
  19. Sharma, Y. K. and K. R. Davis. 1994. Ozone-induced expression of stress-related genes in Arabidopsis thaliana. Plant Physiol. 105, 1089-1096
  20. Zedaker, S. M., N. S. Nicholas and C. Eagar. 1988. Air Pollution and Forest Decline, IUFRO Press 334-338pp

Cited by

  1. Effects of Acid Treatments on Chlorophyll, Carotenoid and Anthocyanin Contents in Arabidopsis vol.16, pp.1, 2010, https://doi.org/10.5423/RPD.2010.16.1.081