DOI QR코드

DOI QR Code

Effects of Carbon Source on Production of Leucocin A from Transformed Saccharomyces cerevisiae

형질 전환된 Saccharomyces cerevisiae의 leucocin A항균 활성도에 대한 탄소원의 영향

  • Lee Sung-ll (Department of Bioscience and Biotechnology, College of Engineering, Silla University) ;
  • Park Jin-Yong (Department of Bioscience and Biotechnology, College of Engineering, Silla University) ;
  • Jung Jong-Ceun (Department of Bioscience and Biotechnology, College of Engineering, Silla University) ;
  • Lee Dong-Ceun (Department of Bioscience and Biotechnology, College of Engineering, Silla University) ;
  • Lee Sang-Hyeon (Department of Bioscience and Biotechnology, College of Engineering, Silla University) ;
  • Ha long-Myung (Department of Bioscience and Biotechnology, College of Engineering, Silla University) ;
  • Ha Bae-Jin (Department of Bioscience and Biotechnology, College of Engineering, Silla University) ;
  • Lee Jae-Hwa (Department of Bioscience and Biotechnology, College of Engineering, Silla University)
  • 이성일 (신라대학교 공과대학 생명공학과) ;
  • 박진용 (신라대학교 공과대학 생명공학과) ;
  • 정종근 (신라대학교 공과대학 생명공학과) ;
  • 이동근 (신라대학교 공과대학 생명공학과) ;
  • 이상현 (신라대학교 공과대학 생명공학과) ;
  • 하종명 (신라대학교 공과대학 생명공학과) ;
  • 하배진 (신라대학교 공과대학 생명공학과) ;
  • 이재화 (신라대학교 공과대학 생명공학과)
  • Published : 2005.12.01

Abstract

The aim of this study was to increase production of leucocin A, a kind of bacteriocin, in a transformed variety of S. cerevisiae. We investigated optical density, total secreted protein, protease activity, and antibacterial activity for the transformed S. cerevisiae in different carbon sources. The production of leucocin A growth-associated, and antibacterial activity, according to carbon source, was in the order of sucrose, glucose, glycerol, and fructose. Antibacterial activity was $10.6\%$ higher in the presence of sucrose than glucose. This is the first report regarding the effect of carbon sources on the production of leucocin A in transformed S. cerevisiae, as far as we ascertain. Our results could prove useful in the industrial production of natural preservatives.

B. subtilis에 대한 항균 활성을 파악하기 위하여 bacteriocin의 일종인 leucocin A로 형질전환된 효모를 배양 시간별로 채취하여 광학밀도, 총 분비 단백질량, 단백질 분해효소 그리고 향균활성을 측정했다. Sucrose > glycerol > glucose > fructose 순으로 세포 증식이 높게 확인되었고, glyceroldmf 제외한 탄소원에서 총분비 단백질은 배양 15 시간까지 증가되었다. Leucocin A의 향균활성(antibacterial activity)은 성장양상, 총 분비 단백질과 비례 하였으며 배양 15 시간에 glucose와 sucrose에서 배양한 상등액이 B. subtilis 성장을 가각 $65.5\%$, $72.6\%$ 감소하는 것으로 나타났다. 정지기 이후에는 향균활성이 급속히 감소하였는데, 이는 항균활성을 보이는 leucocin A가 단백질이고, 단백질 분해효소가 정지기 이후 증가한 것에 의한 것으로 사료된다. 본 연구는 향후 식품산업뿐만 아니라 항생제 생산 사용되기 위한 산업적 기초 자료로써 이용 될 것이다.

Keywords

References

  1. An, Cheol., 1993. Molecular genetics of bacteriocin production in lactic acid bacteria. Bioindustry 6, 12-23
  2. An, Cheol., and M. E. Stiles. 1990. Plasmid-associated bacteriocin production by a strain of Carobacterium piscicola from meat. Appl. Environ. Microbiol. 56, 2503-2510
  3. Anonymous. 1986. International acceptance of Nisin as a food additive. Aplin and Barrett Ltd
  4. Cleveland, J., T. J. Montville., I. F. Nes, and M. L. Chikindas. 2001. Bacteriocins: safe natural antimicrobials for food. Int. J. Food Microbiol. 71, 1-20 https://doi.org/10.1016/S0168-1605(01)00560-8
  5. Calado, C. R. C, C, Almeida., J, M. S. Cabral., and L, P. Fonseca. 2003. Development of a fed-batch cultivation strategy for the enhanced production and secretion of cutinase by a recombinant Saccharomyces cerevisiae SU50 strain. J. Biosci. Bioeng. 96,141-148 https://doi.org/10.1016/S1389-1723(03)90116-2
  6. Davis, D. B., R, Dulbecco, N, H. Eisen, and S. H. Ginberg. 1990. Microbiology. 4 th ed. Lippincott company. Philadelphia. P A. 589-594
  7. Delves-Broughton, J. 1990. Nisin and it's uses aa a food preservative. Food Technol. 44, 100-117
  8. Seo, H. P., C. H. Chung., S. K. Kim., R. A. Gross., D. L. Kaplan, and J. W. Lee. 2004. Mass production of pulluan with optimized concentration of carbon and nitrogen sources by Aureobasidium pullulans HP-2001 in a 100-L bioreactor with the inner pressure. J. Microbiol. Biotechnol. 14,237-242
  9. Lee, S.-H. 2003. Establishment of a leucocin A producing Saccharomyces cerevisiae cell. J. Life Sci. 13, 712-717 https://doi.org/10.5352/JLS.2003.13.5.712
  10. Lee, S. I., D. G. Lee., J. O. Lee., D. H. Shim., C. H. Joo., O. S. Kim., S. H. Lee, and J. H. Lee. 2004. Antibacterial activity of yeast transformed with leucocin A Kor. J. Biotechnol. Bioeng. 04, 291-295
  11. Matsumoto, T., S. Takahashi, M, Ueda, A, Tanaka, H., Fukuda, and A. Kondo. 2002. Preparation of high activity yeast whole cell bioctalysts by optimization of intracellular production of recombinant Rhizopus oryzae lipase. J. Mol. Catal. B-Ezzym 17, 143-149 https://doi.org/10.1016/S1381-1177(02)00021-8
  12. Battaglino, R A., M. Huergo, A M. R Pilosof, and G. Bartholoma. 1991. Culture requirement for the production of protease by Aspergillus oryzae in solid state fermentation. Appl. Microbiol. Biotechnol. 35, 292-296
  13. Reid, G., and J. Burton. 2002. Use of Lactobacillus to prevent infection by pathogenic bacteria. Microbes Infect. 4, 319-324 https://doi.org/10.1016/S1286-4579(02)01544-7
  14. Riley, M A and J. E. Wertz. 2002. Bacteriocin diversity: ecological and evolutionary perspectives. Biochimie. 84, 357-364 https://doi.org/10.1016/S0300-9084(02)01421-9
  15. S, K. Yalcin, and Z. Y. Ozbas. 2004. Effects of different substrates on growth and glycerol production kinetics of a wine yeast strain Saccharomyces cerevisiae Narince 3. Process Biochem. 39, 1285-1291 https://doi.org/10.1016/S0032-9592(03)00252-8
  16. Tagg, G. R, A S. Dajani, and L. W. Wannamarker. 1976. Bacteriocin of gram-positive bacteria. Bacteriol. Rev. 40, 722-756