Variation of Electrical Behavior of Particles in Aqueous Environment Depending Upon the Adsorption Characteristics of Specific Ions

수중 특정 이온의 흡착 특성에 따른 입자의 전기적 거동 변화 양상

  • Kim Dong-Su (Department of Environmental Science and Engineering, Ewha Womans University)
  • Published : 2005.12.01

Abstract

It was possible to understand the adsorption characteristics of ions in aqueous environment based on the variations of PZC and IEP of particles when adsorption of ions on particle surface occurred. The specific adsorption of $Cu^{2+}$ ion upon chalcopyrite surface provoked a lowered PZC, which was considered to be due to increased adsorption of OH- ion via the electrostatic attraction between the two ions. On the contrary, IEP of chalcopyrite was observed to rise when Cu2+ was specifically adsorbed on its surface. The reason for this could be explained by the necessity of the increase of pH to offset the positively increased surface potential of chalcopyrite for the reestablishment of IEP. Neither PZC or IEP of chalcopyrite was observed to change when non-specific adsorption occurred since no change in the surface potential of chalcopyrite was invoked under this condition.

수중에 존재하는 입자의 표면에 대한 특정 이온의 흡착특성을 흡착에 따른 입자의 PZC 와 IEP 의 변화에 근거하여 해석 가능한 것으로 검토되었다. $Cu^{2+}$와 같이 Chalcopyrite 입자표면에 Specific Adsorption을 형성하는 이온이 수중에 존재하는 경우 입자의 PZC는 낮아지는 것으로 관찰되었으며 이는 양이온의 흡착이 OH-이온의 흡착을 초래하여 새로운 PZC를 형성하기 위해 수중 H+농도의 상승이 요구됨으로 인한 결과로 파악되었다. 그러나, 이와는 반대로 IEP는 높아지는 현상이 나타난 바, 이는 양이온의 흡착으로 인해 입자의 Surface Potential 이 양의 방향으로 상승하여 이를 상쇄하기 위한 pH의 증가가 원인인 것으로 고찰되었다. Non-specific Adsorption 의 경우 입자표면의 Surface Potential 의 변화가 초래되지 않음으로 인해 입자의 PZC 및 IEP 는 변화하지 않는 것으로 파악되었다.

Keywords

References

  1. Ania, C. O. et al., 2005: Effect of microwave and conventional regeneration on the microporous and meso-porous network and on the adsorptive capacity of activated carbons, Microporous and Mesoporous Materials, 85, pp. 7-15 https://doi.org/10.1016/j.micromeso.2005.06.013
  2. Baby, R. and Prakash, M. J. 2005: Improving the performance of an active carbon-nitrogen adsorption cryocooler by thermal regeneration, Carbon, 43, pp. 2338-2343 https://doi.org/10.1016/j.carbon.2005.04.013
  3. Huling, S. G. et al., 2005: Fenton-driven chemical regeneration of MTBE-spent GAC, Water Research, 39, pp. 2145-2153 https://doi.org/10.1016/j.watres.2005.03.027
  4. Mittal, A. Krishnan, L. and Gupta, V. K., 2005: Removal and recovery of malachite green from wastewater using an agricultural waste material, de-oiled soya, Separation and Purification Technology, 43, pp. 125-133 https://doi.org/10.1016/j.seppur.2004.10.010
  5. Hasegawa, Y. Adachi, S. and Matsuno, R., 2000: Microbial production of 2-chloro-a-methylbenzyl alcohol and its adsorptive recovery, Biochemical Engineering Journal, 6, pp. 59-64 https://doi.org/10.1016/S1369-703X(00)00074-7
  6. Ferreiro, E. A. and Bussetti, S. G. 2005: Apparent and partial specific adsorption of 1, 10-phenanthroline on mixtures of a-montmorillonite, activate carbon, and silica gel, Journal of Colloid and Interface Science, in press
  7. Lhotsky, A. et al., 2005: Specific adsorption of tetraalkylammonium cations at the water 1,2-dichloroethane interface revisited, Journal of Electroanalytical Chemistry, in press
  8. Advincula, M. et al., 2005: Surface modification of surface solgel derived titanium oxide films by self-assembled monolayers (SAMs) and non-specific protein adsorption studies, Colloids and Surfaces B: Biointerfaces, 42, pp. 29-43 https://doi.org/10.1016/j.colsurfb.2004.12.009
  9. Rudzinski, W. et al., 2000: Calorimetric effects and temperature dependence of simple ion adsorption at oxide/electrolyte interfaces: The systems in which PZC and CIP do not coincide, Journal of Colloid and Interface Science, 226, pp. 353-363 https://doi.org/10.1006/jcis.2000.6828
  10. Kosmulski, M. et al., 2003: Multilaboratory study of the shifts in the IEP of anatase at high ionic strengths, Journal of Colloid and Interface Science, 263, pp. 152-155 https://doi.org/10.1016/S0021-9797(03)00328-X