Comparison of the fatigue limit of fiber-reinforced composites and stainless steel wires when attached to the tooth surface for anchorage reinforcement

고정원 강화를 위해 치면에 부착한 fiber-reinforced composite과 스테인리스강 와이어의 피로한도 비교

  • Kim, Moon-Jung (Department of Orthodontics, School of Dentistry, Pusan National University) ;
  • Park, Soo-Byung (Department of Orthodontics, School of Dentistry, Pusan National University)
  • 김문정 (부산대학교 치과대학 교정학교실) ;
  • 박수병 (부산대학교 치과대학 교정학교실)
  • Published : 2005.08.01

Abstract

This study was performed to compare the fatigue limit of stainless steel wires and Fiber-reinforced composites (FRC) under conditions of permitting physiologic tooth movement. and to evaluate the clinical value of FRCs which was used to reinforce the anchorage unit. The stainless steel wire groups were divided into round and rectangular wire groups. The FRC groups were divided into uni-directional and woven groups, with resin coating and without resin coating in the Proximal area After the number of cycles to failure of each of the 6 groups were measured within the $5{\times}10^5\;cycle$ fatigue limit simulating the orthodontic treatment period. the fatigue limit of each group was compared with each other The findings of this study were as follows. In stainless steel wires, the fatigue limit of rectangular wires were higher than that of round wires. But there was no statistically significant difference (p>0.05). In FRCs with resin coating and without resin coating in the interproximal area, the fatigue limit of uni-directional type was higher than that of the woven type (p<0.05). In uni-directional and woven type FRCs, the fatigue limit of FRC with resin coating in the interproximal area was higher thar that of FRC without resin coating (P<0.05) As the FRCs and stainless steel wires did not fracture until the $5{\times}10^5\;cycle$ fatigue limit which clinically is useful. it is sufficient to use FRC and stainless steel wire for reinforcing anchorage. When esthetics is important and the attachment of additional devices are necessary. it seems sufficient to use FRC as anchorage reinforcement.

본 연구는 고정원을 강화하는데 사용되는 fiber-reinforced composite (FRC)과 스테인리스강 와이어의 피로 한도를 치아의 생리적 동요도가 허용되는 조건에서 비교하여 FRC의 임상적 유용성을 알아보기 위해 시행되었다. 스테인리스강 와이어군은 각형과 원형 와이어군으로 나누고 FRC군은 uni-directional군과 woven군, 그리고 각각의 군에 있어서 치간 부위에 레진을 코팅한 군과 코팅하지 않은 군으로 나누었다 각 군간의 피로한도를 일반적인 교정치료기간을 재현한 $5{\times}10^5cycle$의 피로한도 내에서 측정하여 비교하였다. 그 결과 스테인리스강 와이어에서는 각형 와이어가 원형 와이어보다 피로한도가 더 높았지만 통계적으로 유의하지는 않았다 (p>0.05) 치간부위를 레진으로 코팅한 FRC와 코팅하지 않은 FRC 모두 uni-directional군이 woven군보다 피로한도가 더 높게 나타났으며 (p<0.05) 그 값은 치간 부위를 레진으로 코팅한 FRC가 코팅하지 않은 FRC보다 더 높게 나타났다(p<0.05). 스테인리스강 와이어와 FRC 모두 임상적으로 유용한 $5{\times}10^5cycle$의 피로한도 내에서는 파절되지 않았기 때문에 둘 다 고정원 강화를 위해 사용하여도 충분하며 또한 심미성이 요구되거나 부가적인 장치의 부착이 필요한 곳에서는 FRC를 사용하여도 충분하리라 생각된다.

Keywords

References

  1. Vallittu PK, Sevelius C. Resin-bonded, glass fiber-reinforced composite fixed partial dentures: a clinical study, J Prosthet Dent 2000:84:413-8 https://doi.org/10.1067/mpr.2000.109782
  2. Meiers JC, Duncan JP, Freilich MA. Goldberg AJ. Preimpregnated, fiber-reinforced prostheses: part II. Direct application: splints and fixed partial dentures. Quintessence Int 1998;29:761-8
  3. Belli S, Ozer F. A simple method for single anterior tooth replacement. J Adhesive Dent 2000:2:67-70
  4. Meiers JC, Freilich MA. Chairside prefabricated fiber-reinforced resin composite fixed partial dentures. Quintessence Int 2001;32:99-104
  5. Hombrook DS, Hastings JH. Use of bondable reinforcement fiber for post and core build-up in an endodontically treated tooth: maximizing strength and aesthetics. Prac Periodont Aesthet Dent 1995:7:33-44
  6. Kama JC. A fiber composite laminate endodontic post and core. Am J Dent 1996:9:230-2
  7. Strassler HE, Serio FG. Stabilization of the natural dentition in periodontal cases using adhesive restorative materials. Peridontal Insights 1997:4:4-10
  8. Karaman AL, Kir N, Belli S. Four applications of reinforced polyethylene fiber material in orthodontic practice. Am J Orthod Dentofacial Orthop 2002;121:650-4 https://doi.org/10.1067/mod.2002.123818
  9. Miller TE. A new material for periodontal splinting and orthodontic retention. Compendium 1993;14:800-12
  10. Strassler HE, Scherer W, LoPresti J, Rudo D. Long term clinical evaluation of a woven polyethylene ribbond used for tooth stabilization and splinting. J Israel Orthod Soc 1997:7:11-5
  11. Burstone CJ, Kuhlberg AJ. Fiber-reinforced composites in orthodontics. J Clin Orthod 2000:34:271-9
  12. Freudenthaler JW, Tischler GK, Burstone CJ. Bond strength of fiber- reinforced composite bars for orthodontic attachment. Am J Orthod Dentofacial Orthop 2001;120:648-53 https://doi.org/10.1067/mod.2001.118779
  13. Meiers JC, Kazemi RB, Donadio M. The influence of fiber reinforcement of composites on shear bond strengths to enamel. J Prostbet Dent 2003;89:388-93 https://doi.org/10.1067/mpr.2003.87
  14. Rosentritt M, Behr M, Leibrock A. Intraoral repair of fiber-reinforced composite fixed partial dentures. J Prosthet Dent 1998;79:393-8 https://doi.org/10.1016/S0022-3913(98)70151-9
  15. Song HY, Yi YJ, Cho LR, Park DY. Effects of two preparation designs and pontic distance on bending and fracture strength of fiberreinforced composite inlay fixed partial dentures. J Prostbet Dent 2003 ;90;347-53 https://doi.org/10.1016/S0022-3913(03)00434-7
  16. Schulte W, Lukas D. The periotest metbod. Int Dent J 1992:42:433-40
  17. 이종흔, 김중수. 구강생리학. 서울: 군자출판사; 1994
  18. Okiyarna S, Ikebe K, Nokubi T. Association between masticatory performance and maxiam occlusal force in young men. J Oral Rehabil 2003;30:278-82 https://doi.org/10.1046/j.1365-2842.2003.01009.x
  19. Krejci I, Lutz F. In-vitro test results of tbe evaluation of dental restoration systems. Correlation witb in-vivo results. Schweiz Monatsschr Zahnmed 1990;100:1445-9
  20. Peyron MA, Blanc O, Lund JP, Woda A. Influence of age on adaptability of human masitcation. J Neurophysiol 2004;92:773-9 https://doi.org/10.1152/jn.01122.2003
  21. Turker KS, Brinkworth RS, Abolfathi P, Linke IR, Nazeran H A device for investigating neuromuscular control in the human masticatory system. J Neurosci Methods 2004;136:141-9 https://doi.org/10.1016/j.jneumeth.2004.01.001
  22. Kusy RP. The future of orthodontic materials: The long-term view. Am J Orthod Dentofacial Orthop 1998:113:91-5 https://doi.org/10.1016/S0889-5406(98)70280-X
  23. Goldberg AJ, Burstone CJ, Hadjinikolaou I, Iancar J, Screening of matrices and fibers for reinforced thermoplastics intended for dental application. J Biomed Mater Res 1994;28:167-73 https://doi.org/10.1002/jbm.820280205
  24. Freilich MA, Goldberg AJ, The use of a pre-impregnated, fiberreinforced composite in the fabrication of a periodontal splint: a preliminary report. Prac Periodontics Aesthet Dent 1997:9:873-6
  25. Freilich MA, Kannaker AC, Burstone CJ, Goldberg AJ, Development and clinical applications of a light-polymerized fiber-reinforced composite. J Prosthet Dent 1998:80:311-8 https://doi.org/10.1016/S0022-3913(98)70131-3
  26. Ellakwa AE, Shortall AC, Marquis PM. Influence of fiber type and wetting agent on the flexural properties of an indirect fiber reinforced composite. J Prosthet Dent 2002;88:485-90 https://doi.org/10.1067/mpr.2002.129303
  27. Goldberg AJ, Freilich MA, Haser KA, Audi JH. Flexure properties and fiber architecture of commercial fiber reinforced composites. J Dent Res 1998:77(Special Issue A):967