한국 남부 연안해역의 탄소동위원소연대 보정

Marine Reservoir Corrections $({\Delta}R)$ for Southern Coastal Waters of Korea

  • 공기수 (한국지질자원연구원 석유해저자원연구부) ;
  • 이치원 (한국지질자원연구원 석유해저자원연구부)
  • KONG, GEE SOO (Petroleum & Marine Resources Division, Korea Institute of Geoscience & Mineral resources(KIGAM)) ;
  • LEE, CHI WON (Petroleum & Marine Resources Division, Korea Institute of Geoscience & Mineral resources(KIGAM))
  • 발행 : 2005.05.01

초록

한국 주변해역의 해양시료에서 측정된 탄소동위원소 연대 값을 실제 역년(calendar age)값에 가깝게 변환하기 위하여 국립수산과학원(NFRDI)에서 제공한 핵실험 이전인 1942년에 한국 연안에서 채취한 2종의 연체동물 패각 시료를 이용하여 marine reservoir correction$({\Delta}R)$ 값을 측정하였다. 남서해안에서의 측정된 ${\Delta}R$ 값은 $-117\pm45\;^{14}C\;yr$, 남동해안에서 측정된 값은 $-160\pm35\;^{14}C\;yr$로 계산되었다. 이 값들은 황해의 중국연안에서 측정된 값들의 범위에 속하는데 이는 중국과 한국 연안해역에서 reservoir $^{14}C$ age가 지구규모의 해양 평균 reservoir $^{14}C$ age보다 적은 값을 갖고 있음을 말한다. 이들 지역의 낮은 ${\Delta}R$ 값은 아마도 담수유입의 영향을 반영하는 것으로 생각된다. 본 연구에서 제시된 ${\Delta}R$값은 한국 주변해역에서 측정된 탄소동위원소 연대 값을 실제 역년 값에 가깝게 변환시킬 수 있도록 도움을 줄 것이다.

Marine reservoir correction $({\Delta}R)$ values are measured using two species of mollusk tests collected by NFRDI in 1942 before nuclear bomb testing to convert the radiocarbon age to calendar age in Korean coastal waters more accurately. The ${\Delta}R$ values are calculated to be $-117\pm45\;^{14}C\;yr$ in the southwestern coast of Korea and $-160\pm35\;^{14}C\;yr$ in southeastern coast. These values are similar to those in Chinese coast of the Yellow Sea $(-81\pm60\~-178\pm50\;^{14}C\;yr$, indicating that regional reservoir $^{14}C$ ages of these areas are lower than mean global reservoir $^{14}C$ age. The lower ${\Delta}R$ values in these areas are presumed to be mainly caused by influence of fresh-water inflow. The ${\Delta}R$ values presented In this study enhance the accuracy in converting radiocarbon age to calendar age in Korean coastal waters.

키워드

참고문헌

  1. 남승일, 김성필, 장정해, A. Mackensen, 2003. 마지막 해빙기 해침 이후 동중국해 북부해역과 황해의 고환경 변화. 지질학회, 39(2): 149-160
  2. Druffel E.R.M. and S. Griffin, 1999. Variability of surface ocean radiocarbon and stable isotopes in the southwestern Pacific. Journal of Geophysical Research, 104(10): 23,607-23,613
  3. Dye, T., 1994. Apparent ages of marine shells: implications for archaeological dating in Hawaii. Radiocarbon, 36: 51-57 https://doi.org/10.1017/S0033822200014326
  4. Faure, G, 1986. Principles of isotope geology (2nd). John Wiley & Sons, New York, pp. 393-394
  5. Heier-Nielsen, S., J. Heinemeier, H.L. Nielsen and N. Rud, 1995. Recent reservoir ages for Danish fjords and marine waters. Radiocarbon, 37: 875-882 https://doi.org/10.1017/S0033822200014958
  6. Hogg, A.G., T.F.G. Higham and J. Dahm, 1998. ${14}^C$ dating of modern marine and estuarine shellfish. Radiocarbon, 40: 975-984
  7. Ingram, B.L. and J.R. Southon, 1996. Reservoir ages in eastern pacific coastal and estuarine waters. Radiocarbon, 38(3): 573-582 https://doi.org/10.1017/S0033822200030101
  8. Kim, D.S., Park, B.K, and I.C. Shin, 1999. Paleoenvironmental changes of the Yellow Sea during the Late Quaternary. Geo-Marine Letters, 18: 189-194 https://doi.org/10.1007/s003670050067
  9. Kim J.M. and J.P. Kennett, 1998. Paleoenvironmental changes associated with the Holocene marine transgression, Yellow Sea (Hwanghae). Marine micropaleontology, 34: 71-89 https://doi.org/10.1016/S0377-8398(98)00004-8
  10. Kim J.M. and M. Kucera, 2000. Benthic foraminifer record of environmental changes in the Yellow Sea (Hwanghae) during the last 15,000 years. Quaternary science reviews, 19: 1067-1085 https://doi.org/10.1016/S0277-3791(99)00086-4
  11. Park, S.C., D.G. Yoo, K.-W. Lee, and H.-H. Lee, 1999. Accumulation of recent muds associated with coastal circulations, southeastern Korea Sea (Korea Strait). Continental shelf research, 19: 589-608 https://doi.org/10.1016/S0278-4343(98)00106-X
  12. Peck, L.S. and T. Brey, 1996. Bomb signals in old Antarctic brachiopods. Nature, 380: 207-208
  13. Southon, J., M. Kashgarian, M. Fontugne, B. Metivier and W.W. Yim, 2002. Marine reservoir corrections for the indian ocean and southeast asia. Radiocarbon, 44(1): 167-180 https://doi.org/10.1017/S0033822200064778
  14. Spiker, E.C., 1980. The behavior of ${14}^C$ and ${13}^C$in estuarine water: Effects of in situ $CO_{2}$ production and atmospheric exchange. Radiocarbon, 22(3): 647-654 https://doi.org/10.1017/S0033822200010018
  15. Stuiver, M. and H.A. Polach, 1977. Discussion: reporting of ${14}^C$ data. Radiocarbon, 19(3): 355-363 https://doi.org/10.1017/S0033822200003672
  16. Stuiver, M., G.W. Pearson and T.F. Braziunas, 1986. Radiocarbon age calibration of marine samples back to 9000 cal yr BP. Radiocarbon, 28: 980-1021 https://doi.org/10.1017/S0033822200060264
  17. Stuiver, M. and T.F. Braziunas, 1993. Modeling atmospheric ${14}^C$ influences and ${14}^C$ ages of marine samples to 10,000 BC. Radiocarbon, 35(1): 137-189 https://doi.org/10.1017/S0033822200013874
  18. Stuiver, M., P.J. Reimer, E. Bard, J.W. Beck, G.S. Burr, K.A. Hughen, B. Kromer, F.G. McCormac, J. van der Plicht and M. Spurk, 1998a. INTCAL98 radiocarbon age calibration 24,000-0 cal. BP. Radiocarbon, 40(3): 1041-1083
  19. Stuiver, M., P.J. Reimer and T.F. Braziunas, 1998b. High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon, 40(3): 1127-1151 https://doi.org/10.1017/S0033822200019172
  20. Vogel, J.C., A. Fuls, E. Visser and B. Becker, 1993. Pretoria calibration curve for short-lived samples, 1930-3350 BC. Radiocarbon, 35: 73-85