Optimization of Production Conditions of Biosurfactant from Bacillus sp. and its Purification

Bacillus sp.에 의한 생물계면활성제의 생산 및 그의 성질

  • Kim, Jin-Sook (Division of Biotechnology and Genetic Engineering, College of Life and Environmental Sciences) ;
  • Song, Hee-Sang (Division of Biotechnology and Genetic Engineering, College of Life and Environmental Sciences) ;
  • Chung, Nam-Hyun (Division of Biotechnology and Genetic Engineering, College of Life and Environmental Sciences) ;
  • Bang, Won-Gi (Division of Biotechnology and Genetic Engineering, College of Life and Environmental Sciences)
  • 김진숙 (고려대학교 생명환경과학대학 생명유전공학부) ;
  • 송희상 (고려대학교 생명환경과학대학 생명유전공학부) ;
  • 정남현 (고려대학교 생명환경과학대학 생명유전공학부) ;
  • 방원기 (고려대학교 생명환경과학대학 생명유전공학부)
  • Published : 2005.06.30

Abstract

A bacterium capable of emulsifying hydrocarbon, n-hexadecane, and decreasing surface tension of the culture media using oil collapsing method was isolated. The bacterium was partially identified as Bacillus sp. and named BJS-51. n-Hexadecane was the most effective carbon source for production of biosurfactant. Surface tension was decreased from 76 dyne/cm to 31 dyne/cm and CMD (critical micelle dilution) had the highest value of 5.7 at 3% n-hexadecane. Ammonium phosphate was the most effective nitrogen source, when C/N ratio was 60, surface tension and CMD were 29 dyne/cm and 9.2, respectively. Optimum pH and temperature were 7.2 and $30^{\circ}C$, respectively. Produced biosurfactant was extracted and purified using organic solvent extraction method and preparative HPLC systems. After analysis by various color reaction, this biosurfactant was identified as lipopolysaccharide. Surface tension and CMC (critical micelle concentration) of purified biosurfactant were 27 dyne/cm and 0.08 g/l, repectively. CMD was 9.2, so the yield of biosurfactant was about 0.74 g/l at the optimal conditions. The biosurfactant was very stable at wide range of $pH\;2{\sim}12$ with surface tension $29{\sim}31\;dyne/cm$ and showed $29{\sim}30\;dyne/cm$ of surface tension after heat treatment at $100^{\circ}C$ for 60 min.

토양 시료로부터 n-hexadecane 대사능을 가지며 배양액의 표면장력을 감소시키고, 탄화수소를 가장 잘 유화시키는 세균을 oil-film collapsing 방법을 통해 선별하였다. 세균은 Bacillus sp.로 부분동정되었으며, BJS-51로 명명하였다. 생물계면활성제의 최적 생산에는 n-hexadecane이 가장 효과적인 탄소원이었으며, 3%의 농도일 때 표면장력이 76 dyne/cm에서 31 dyne/cm로 감소하였다. 이 때, CMD(critical micelle dilution)가 5.7로 가장 높았다. 질소원으로는 $(NH_4)_2HPO_4$가 가장 효과적이었으며, C/N ratio가 60인 경우 표면장력이 29 dyne/cm, CMD가 9.2로 가장 활성이 좋았다. 생산 최적 pH는 7.2였으며, 최적 온도는 $30^{\circ}C$였다. Bacillus sp. BJS-51에 의해 생산된 생물계면활성제를 유기용매추출법과 preparative HPLC systems을 통해 추출, 정제하였다. 각종 발색 시약으로 정제된 생물계면활성제의 생화학적 성질을 조사한 결과, 지질다당임을 확인 할 수 있었다. 생산된 생물계면활성제의 표면장력은 27 dyne/cm까지 감소하였으며, CMC(critical micelle concentration)는 0.08 g/l였다. 상기의 최적조건에서 생물계면활성제의 생산량은 CMD값이 9.2이었으므로 약 0.74 g/l이었다. 생산된 생물계면활성제는 $pH\;2{\sim}12$ 사이에서 표면장력 $29{\sim}31\;dyne/cm$로 안정하였으며, $100^{\circ}C$에서 60분간 열을 가한 후에도 표면장력 $29{\sim}30\;dyne/cm$로 안정하였다.

Keywords

References

  1. Kosaric, N., Gray, C. C. and Carin, W. L. (1983) Microbial emulsifiers and deemulsifiers. Biotechnology 3, 575-592
  2. layman, P. (1985) Industrial set for strong growth. Chem. Eng. News 63, 23
  3. lim, K. H. (1996) Their structure, properties, and applications. J. Korean Oil Chemist's Soc. 13, 1-20
  4. Milton, M. J. (1987) Surfactants in engineering technology. Surfactant Science Series. 26. Marcell Dekker, New York
  5. Banat, I. M., Makkar, R. S. and Comeotra, S. S. (2000) Potential commercial applications of microbial surfactants. Appl. Microbial. Biotechnol. 53, 495-508 https://doi.org/10.1007/s002530051648
  6. Shaw, A. (1994) Surfactant-94. Cosmat. Chem. Specialitics. 70, 24-34
  7. Greek, B. F. (1991) Sales of detergents growing desoite recession. Chem. Eng. News 69, 25-52
  8. Magaritis, A., Zajic, J. E. and Gerson, D. F. (1979) Production and surface active properties of microbial surfactants. Biotech. Bioeng. 21, 1151-1162 https://doi.org/10.1002/bit.260210706
  9. Zobell, C. E. (1947) Bacterial release of oil from sedimentory material. Oil Gas. J. 46, 62-67
  10. Boyle, C. D. and Reade, A. E. (1983) Characterization of two extracellular polysaccharides from marine bacteria. Appl. Environ. Microbiol. 46, 392-399
  11. Copper, D. G. and Paddock, D. A. (1984) Production of a biosurfactant from Torulopsis bombicola. Appl. Environ. Microbiol. 47, 173-176
  12. Desai, J. D. and Banat, I. M. (1997) Microbial production of surfactants and their commercial potential. Microbiol. Mol. Biol. Reviews 61, 47-64
  13. Lang, S. and Wulbrandt, D. (1999) Rhamnolipids- Biosynthesis, Microbial Production and Application Potential. Appl. Microbiol. Biotechnol. 51, 22-47 https://doi.org/10.1007/s002530051358
  14. Singh, M. and Desai, J. D. (1989) Bergey's manual of synthetic bacteriology. Vol. 1
  15. Rogenberg, E., Zuckerberg, A., Runinovitz, C. and Gutnick, D. l. (1979) Emulsifier Arthrobacter RAG-1: Isolation and emulsifying properties. Appl. Environ. Microbiol. 37, 402-408
  16. Magaritis, A., Kennedy, A., Zajic, J. E. and Gerson, D. F. (1979) Biosurfactant production by Nocardia erythropolis. Dev. Ind. Microbiol. 20, 623-630
  17. Zajic, J. E. and Seffens, W. (1984) Biosurfactants, CRC Crit. Rev. Biotechnol. 1, 87-107 https://doi.org/10.3109/07388558309082580
  18. Shirley C, C., Gunter, Z. and Joseph, S. (1986) Handbook of chromatography. Vol I, CRC Press. pp. 176-187
  19. Gunter, Z. and Joseph, S. (1977) Handbook of chromatography. Vol II, CRC Press. pp. 103-173
  20. Kim, S. H., Lim, E. J., Lee, S. O., Lee, J. D. and Lee, T. H. (2000) Purification and characterization of biosurfactants from Nocardia sp. 1-417. Biotechnol. Appl. Biochem. 31, 249-253 https://doi.org/10.1042/BA19990111
  21. Kim, H. S., Yoon, B. D., Choung, D. H. and Oh, H. H. (1999) Characterization of biosurfactant, mannosylerylthritol lipid produced from Candida sp. SY16. Appl. Microbiol. Biotechnol. 52, 713-721 https://doi.org/10.1007/s002530051583
  22. Arima, K., Kakinuma, A. and Tamura, G. (1968) Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis:isolation, characterization and its inhibition of fibrin clot formation. Biochem. Biophys. Res. Commun. 31, 488-494 https://doi.org/10.1016/0006-291X(68)90503-2
  23. Cooper, D. G., Macdonald, C. R., Duff, S. J. B. and Kosaric, N. (1981) Enhanced production of surfactin from Bacillus subtilis by continuous product removal and metal cation additions. Appl. Environ. Microbiol. 42, 408-412