Biological Upgrading of Heavy Crude Oil

  • Leon, Vladimir (Unidad de Biotechnologia del Petroleo, Centro de Biotecnologia Fundacion Instituto de Estudios Avanzados(IDEA)) ;
  • Kumar, Manoj (Unidad de Biotechnologia del Petroleo, Centro de Biotecnologia Fundacion Instituto de Estudios Avanzados(IDEA))
  • Published : 2005.12.31

Abstract

Heavy crudes (bitumen) are extremely viscous and contain high concentrations of asphaltene, resins, nitrogen and sulfur containing heteroaromatics and several metals, particularly nickel and vanadium. These properties of heavy crude oil present serious operational problems in heavy oil production and downstream processing. There are vast deposits of heavy crude oils in many parts of the world. In fact, these reserves are estimated at more than seven times the known remaining reserves of conventional crude oils. It has been proven that reserves of conventional crude oil are being depleted, thus there is a growing interest in the utilization of these vast resources of unconventional oils to produce refined fuels and petrochemicals by upgrading. Presently, the methods used for reducing viscosity and upgradation is cost intensive, less selective and environmentally reactive. Biological processing of heavy crudes may provide an ecofriendly alternative or complementary process with less severe process conditions and higher selectivity to specific reactions to upgrade heavy crude oil. This review describes the prospects and strengths of biological processes for upgrading of heavy crude oil.

Keywords

References

  1. Hunt, J. M. (1979) Petroleum Geochemistry and Geology. 2nd ed., W.H. Freeman, San Francisco, USA
  2. Martinez, A. R. (1984) Report of working group on definitions. pp. 1xvii-1xviii. In: R. F. Meyer, J. C. Wynn, and J. C. Olson (eds.). The Future of Heavy Crude and Tar Sands, Second International Conference, McGraw-Hill, New York, NY, USA
  3. Petersen, N. F. and P. J. Hickey (1987) California Plio- Miocene oils: Evidence of early generation. pp. 351-359. In: R. F. Meyer (eds.). Exploration for Heavy Crude Oil and Natural Bitumen. Am. Assoc. Petrol. Geol., USA
  4. Roadifer, R. E. (1987) Size distribution of the worlds largest known oil and tar accumulations. pp. 3-23. In: R. F. Meyer (eds.). Exploration for Heavy Crude Oil and Bitumen. Am. Assoc. Petrol. Geol., USA
  5. Wu, W. and J. Chen (1999) Characteristics of Chinese heavy crudes. J.Pet. Sci. Eng. 22: 25-30 https://doi.org/10.1016/S0920-4105(98)00053-9
  6. Yaghi, B. M. and A. Al-Bemani (2002) Heavy crude oil viscosity reduction for pipeline transportation. Energy Sources 24: 93-102 https://doi.org/10.1080/00908310252774417
  7. Leon, V. (2000) Composition and structure of heavy oils. J. CODICID 2: 34-43
  8. Leon, V. (1998) New vision on heavy crude oil molecular structure. Vision Technologia 5:131-138 (in Spanish)
  9. Speight, J. G. (1998) The Chemistry and Technology of Petroleum. pp. 412-467. Marcel Dekker, Inc., New York, NY, USA
  10. Payzant, J. D., E. M. Lown, and O. P. Strausz (1991) Structural units of Athabasca asphaltene: the aromatics with a linear carbon network. Energy Fuels 5: 445-453 https://doi.org/10.1021/ef00027a015
  11. Groenzin, H. and O. C. Mullins (2000) Molecular size and structure of asphaltenes from various sources. Energy Fuels 14: 677-684 https://doi.org/10.1021/ef990225z
  12. Artok, L., Y. Su, Y. Hirose, M. Hosokawa, S. Murata, and M. Nomura (1999) Structure and reactivity of petroleumderived asphaltene. Energy Fuels 13: 287-296 https://doi.org/10.1021/ef980216a
  13. Strausz, O. P., T. W. Mojelsky, E. M. Lown, I. Kowalewski, and F. Behar (1999) Structural features of Boscan and Duri asphaltenes. Energy Fuels 13: 228-247 https://doi.org/10.1021/ef980245l
  14. Strausz, O. P., T. W. Mojelsky, and E. M. Lown (1992) The molecular structure of asphaltene: an unfolding story. Fuel 71: 1355-1363 https://doi.org/10.1016/0016-2361(92)90206-4
  15. Peng, P., A. Morales-Izquierdo, A. Hogg, and O. P. Strausz (1997) Molecular structure of athabasca asphaltene: sulfide, ether, and ester linkages. Energy Fuels 11: 1171-1187 https://doi.org/10.1021/ef970027c
  16. Bressler, D. C. and M. R. Gray (2003) Transport and reaction processes in bioremediation of organic contaminants. 1. Review of bacterial degradation and transport. Int. J. Chem. React. Eng. 1: R3
  17. Gray, M. R. (1994) Upgrading Petroleum Residues and Heavy Oils. Marcel Dekker, Inc., New York, NY, USA
  18. Pineda-Flores, G., G. Boll-Arguello, C. Lira-Galeana, and A. M. Mesta-Howard (2004) A microbial consortium isolated from a crude oil sample that uses asphaltenes as a carbon and energy source. Biodegradation 15: 145-151 https://doi.org/10.1023/B:BIOD.0000026476.03744.bb
  19. Ferrari, M. D., C. Albornoz, and E. Neirotti (1994) Biodegradability in soil of residual hydrocarbons in petroleum tank bottoms. Rev. Argent. Microbiol. 26: 157-170 (in Spanish)
  20. Pendrys, J. P. (1989) Biodegradation of asphalt cement-20 by aerobic bacteria. Appl. Environ. Microbiol. 55: 1357- 1362
  21. Rontani, J. F., F. Bosser-Joulak, E. Rambeloarisoa, J. C. Bertrand, and G. R. Faure (1985) Analytical study of asphalt crude oil and asphaltenes biodegradation. Chemosphere 14: 1413-1422 https://doi.org/10.1016/0045-6535(85)90161-4
  22. Rojas-Avelizapa, N. G., E. Cervantes-Gonzalez, R. Cruz- Camarillo, and L. I. Rojas-Avelizapa (2002) Degradation of aromatic and asphaltenic fractions by Serratia liquefasciens and Bacillus sp. Bull. Environ. Contam. Toxicol. 69: 835-842 https://doi.org/10.1007/s00128-002-0135-1
  23. Premuzic, E. T., M. S. Lin, and B. Manowitz (1994) The significance of chemical markers in the bioprocessing of fuels. Fuel Process Technol. 40: 227-239 https://doi.org/10.1016/0378-3820(94)90145-7
  24. Lin, M. S., E. T. Premuzic, J. H. Yablon, and W. M. Zhou (1996) Biochemical processing of heavy oils and residuum. Appl. Biochem. Biotechnol. 57/58: 659-664 https://doi.org/10.1007/BF02941747
  25. Premuzic, E. T. and M. S. Lin (1999) Induced biochemical conversions of heavy crude oils. J. Pet. Sci. Eng. 22: 171-180 https://doi.org/10.1016/S0920-4105(98)00066-7
  26. Premuzic, E. T., M. S. Lin, M. Bohenek, and W. M. Zhou (1999) Bioconversion reactions in asphaltenes and heavy crude oils. Energy Fuels 13: 297-304 https://doi.org/10.1021/ef9802375
  27. Premuzic, E. T., M. S. Lin, H. Lian, W. M. Zhou, and J. Yablon (1997) The use of chemical markers in the evaluation of crude bioconversion products, technology, and economic analysis. Fuel Process. Technol. 52: 207-223 https://doi.org/10.1016/S0378-3820(97)00030-1
  28. Premuzic, E. T., M. S. Lin, and L. Racaniello (1993) Chemical markers of induced microbial transformations in crude oils. pp. 37-54. In: E. T. Premuzic and A. Woodhead (eds.). Microbial Enhancement of Oil Recovery: Recent Advances. Elsevier, NY, USA
  29. Premuzic, E. T. (1994) Biochemically enhanced oil recovery and oil treatment. US patent 5,297,025
  30. Premuzic, E. T. and M. S. Lin (1996) Process for producing modified organisms for oil treatment at high temperatures, pressure and salinity. US Patent 5,492,828
  31. Premuzic, E. T. and M. S. Lin (1999) Biochemical upgrading of oils. US Patent 5, 858, 766
  32. Kanaly, A. R. and S. Harayama (2000) Biodegradation of high molecular weight polycyclic aromatic hydrocarbons by bacteria. J. Bacteriol. 182: 2059-2067 https://doi.org/10.1128/JB.182.8.2059-2067.2000
  33. Van Hamme, J. D., P. M. Fedorak, J. M. Foght, M. R. Gray, and H. D. Dettman (2004) Use of a novel fluorinated organosulfur compound to isolate bacteria capable of carbon-sulfur bond cleavage. Appl. Environ. Microbiol. 70: 1487-1493 https://doi.org/10.1128/AEM.70.3.1487-1493.2004
  34. Fedorak, P. M., K. M. Semple, R. Vazquez-Duhalt, and D. W. S. Westlake (1993) Chloroperoxidase-mediated modifications of petroporphyrins and asphaltenes. Enzyme Microb. Technol. 15: 429-437 https://doi.org/10.1016/0141-0229(93)90131-K
  35. Mogollon, L., R. Rodriguez, W. Larrota, C. Ortiz, and R. Torres (1998) Biocatalytic removal of nickel and vanadium from petroporphyrins and asphaltenes. Appl. Biochem. Biotechnol. 70-72: 765-767
  36. Tinoco, R. and R. Vazquez-Duhalt (1998) Chemical modification of cytochromec improves their properties in oxidation of polycyclic aromatic hydrocarbons. Enzyme Microb. Technol. 22: 8-12 https://doi.org/10.1016/S0141-0229(97)00073-2
  37. Vazquez-Duhalt, R., D. W. S. Westlake, and P. M. Fedorak (1993) Cytochrome c as biocatalyst for the oxidation of thiophenes and organosulfides. Enzyme Microb. Technol. 15: 494-499 https://doi.org/10.1016/0141-0229(93)90082-D
  38. Garcia-Arellano, H., E. Buenrostro-Gonzalez, and R. Vazquez-Duhalt (2004) Biocatalytic transformation of petroporphyrins by chemical modified cytochrome c. Biotechnol. Bioeng. 85: 790-798 https://doi.org/10.1002/bit.20023
  39. Garcia-Arellano, H., B. Valderrama, G. Saab-Rincon, and R. Vazquez-Duhalt (2002) High temperature biocatalysis by chemically modified cytochrome c. Bioconjug. Chem. 13: 1336-1344 https://doi.org/10.1021/bc025561p
  40. Wernerus, H. and S. Stahl (2004) Biotechnological applications for surface-engineered bacteria. Biotechnol. Appl. Biochem. 40: 209-228 https://doi.org/10.1042/BA20040014
  41. Van Hamme, J. D., A. Singh, and O. P. Ward (2003) Recent advances in petroleum microbiology. Microbiol. Mol. Biol. Rev. 67: 503-549 https://doi.org/10.1128/MMBR.67.4.503-549.2003
  42. Gray, K. A., G. T. Mrachko, and C. H. Squires (2003) Biodesulfurization of fossil fuels. Curr. Opin. Microbiol. 6: 229-235 https://doi.org/10.1016/S1369-5274(03)00065-1
  43. Monticello, D. J. (2000) Biodesulfurization and the upgrading of petroleum distillates. Curr. Opin. Biotechnol. 11: 540-546 https://doi.org/10.1016/S0958-1669(00)00154-3
  44. Konishi, J., Y. Ishii, K. Okumura, and M. Suzuki (2000) High temperature desulfurization by microorganisms. US Patent 6,130,081
  45. Baldi, F., M. Pepi, and F. Fava (2003) Growth of Rhodosporidium toruloides strain DBVPG 6662 on diben zothiophene crystals and orimulsion. Appl. Environ. Microbiol. 69: 4689-4696 https://doi.org/10.1128/AEM.69.8.4689-4696.2003
  46. Bhadra, A., J. M. Scharer, and M. Moo-Young (1987) Microbial desulphurization of heavy oils and bitumen. Biotechnol. Adv. 5: 1-27 https://doi.org/10.1016/0734-9750(87)90002-4
  47. Borgne, S. L. and R. Quintero (2003) Biotechnological processes for refining of petroleum. Fuel Process. Technol. 81: 155-169 https://doi.org/10.1016/S0378-3820(03)00007-9
  48. Benedik, M. J., P. R. Gibbs, R. R. Riddle, and R. C. Wilson (1998) Microbial denitrogenation of fossiluels. Trends Biotechnol. 16: 390-395 https://doi.org/10.1016/S0167-7799(98)01237-2
  49. Riddle, R. R., P. R. Gibbs, R. C. Wilson, and M. J. Benedik (2003) Recombinant carbazole-degrading strains for enhanced petroleum processing. J. Ind. Microbiol. Biotechnol. 30: 6-12 https://doi.org/10.1007/s10295-002-0005-1
  50. Kilbane, J. J., A. Daram, J. Abbasian, and K. J. Kayser (2002) Isolation and characterization of Sphingomonas sp. GTIN11 capable of carbazole metabolism in petroleum. Biochem. Biophys. Res. Commun. 297: 242-248 https://doi.org/10.1016/S0006-291X(02)02183-6
  51. Bressler, D. C., L. A. Kirkpatrick, J. M. Foght, P. M. Fedorak, and M. R. Gray (2003) Denitrogenation of carbazole by combined biological and catalytic treatment. American Chemical Society, Petroleum Chemistry Division Preprints 48: 44-46
  52. Bressler, D. C., P. M. Fedorak, and M. A. Pickard (2000) Oxidation of carbazole, p-ethylcarbazole, fluorene and dibenzothiophene by the laccase of Coriolopsis gallica. Biotechnol. Lett. 22: 1119-1125 https://doi.org/10.1023/A:1005633212866
  53. Xu, G. W., K. W. Mitchell, and D. J. Monticello (1998) Fuel product produced by demetalizing a fossil fuel with an enzyme. US Patent 5,624,844
  54. Vazquez-Duhalt, R., E. Torres, B. Valderrama, and S. Le Borgne (2002) Will biochemical catalysis impact the petroleum refining industry? Energy Fuel 16: 1239-1250 https://doi.org/10.1021/ef020038s
  55. Kirkwood, K. M., S. Ebert, D. Kharbanda, J. M. Foght, P. M. Fedorak, and M. R. Gray. (2003) Bioprocessing for heavy crude oil viscosity reduction. Proceedings of the American Chemical Society. March 23-27. New Orleans, LA, USA
  56. Wu, Q., M. R. Gray, M. A. Pickard, P. M. Fedorak, and J. M. Foght (2003) Biocatalytic ring opening of dibenzothiophene and phenanthrene as model substrates dissolved in crude oil. Proceedings of the American Chemical Society. March 23-27, New Orleans, LA, USA
  57. Coyle, C. L., M. Siskin, D. T. Ferrughelli, M. S. P. Logan, and G. Zylstra (2000) Biological activation of aromatics for chemical processing and/or upgrading of aromatic compounds, petroleum coal, resid, bitumen and other petrochemical streams. US Patent 6,156,946
  58. Leon, V., S. Fuenmayor, A. DeSisto, A. Marcano, S. Munoz, and A. Rivas (2003) Isolation of bacteria strains capacities in craking and desulfurization of heavy crude oil. Proceeding of 2nd ICPB The Development and Prospective of Biotechnology Applied to the Oil Industry. November 5- 7. Mexico City, Mexico
  59. Fedorak, P. M., K. M. Semple, R. Vazquez-Duhalt, and D. W. S. Westlake (1993) Chloroperoxidasemediated modifications of petroporphyrins and asphaltenes. Enzyme Microb. Technol. 15: 429-437 https://doi.org/10.1016/0141-0229(93)90131-K
  60. Vorbeck, C., H. Lenke, P. Fischer, and H. J. Knackmuss (1994) Identification of a hydride-Meisenheimer complex as a metabolite of 2,4,6-trinitrotoluene by a Mycobacterium strain. J. Bacteriol. 176: 932-934 https://doi.org/10.1128/jb.176.3.932-934.1994
  61. Esteve-Núñez, A., A. Caballero, and J. L. Ramos (2001) Biological degradation of 2,4,6-trinitrotoluene. Microbiol. Mol. Biol. Rev. 65: 335-352 https://doi.org/10.1128/MMBR.65.3.335-352.2001
  62. Zhang, X., E. R. Sullivan, and L. Y. Young (2000) Evidence for aromatic ring reduction in the biodegradation pathway of carboxylated naphthalene by a sulfate reducing consortium. Biodegradation 11: 117-124 https://doi.org/10.1023/A:1011128109670
  63. Rieger, P.-G., V. Sinnwell, A. Preuss, W. Francke, and H.-J. Knackmuss (1999) Hydride-Meisenheimer complex formation and protonation as key reactions of 2,4,6- trinitrophenol biodegradation by Rhodococcus erythropolis. J. Bacteriol. 181: 1189-1995
  64. Premuzic, E. T., M. S. Lin, M. Bohenek, and W. M. Zhou (1999) Bioconversion reactions in asphaltenes and heavy crude oils. Energy Fuels 13: 297-304 https://doi.org/10.1021/ef9802375
  65. Heiss, G., K. W. Hofmann, N. Trachtmann, D. M. Walters, P. Rouvière, and H.-J. Knackmuss (2002) npd gene functions of Rhodococcus erythropolis HL PM-1 in the initial steps of 2,4,6-trinitrophenol degradation. Microbiology 148: 799-806 https://doi.org/10.1099/00221287-148-3-799
  66. Miller, R. M. and R. Bartha (1989) Evidence from liposome encapsulation for transport-limited microbial metabolism of solid alkanes. Appl. Environ. Microbiol. 55: 269-274
  67. Kropp, K. G., I. A. Davidova, and J. M. Suflita (2000) Anaerobic oxidation of n-dodecane by an addition reaction in a sulfate-reducing bacterial enrichment culture. Appl. Environ. Microbiol. 66: 5393-5398 https://doi.org/10.1128/AEM.66.12.5393-5398.2000
  68. Spormann, A. M. and F. Widdel (2000) Metabolism of alkylbenzenes, alkanes, and other hydrocarbons in anaerobic bacteria. Biodegradation 11: 85-105 https://doi.org/10.1023/A:1011122631799
  69. Widdel, F. and R. Rabus (2001) Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr. Opin. Biotechnol. 12: 259-276 https://doi.org/10.1016/S0958-1669(00)00209-3
  70. Hamer, G. and N. Al-Awadhi (2000) Biotechnological applications in the oil industry. Acta Biotechnol. 20: 335- 350 https://doi.org/10.1002/abio.370200314
  71. Lazar, I., A. Voicu, C. Nicolescu, D. Mucenica, S. Dobrota, I. G. Petrisor, M. Stefanescu, and L. Sandulescu (1999) The use of naturally occurring selectively isolated bacteria for inhibiting paraffin deposition. J. Pet. Sci. Eng. 22: 161-169 https://doi.org/10.1016/S0920-4105(98)00065-5
  72. Rocha, C. A., D. Gonzalez, M. L. Iturralde, U. L. Lacoa, and F. A. Morales (2000) Production of oily emulsions mediated by a microbial tenso-active agent. US Patent 6,060,287
  73. Iqbal, S., Z. M. Khalid, and K. A. Malik (1995) Enhanced biodegradation and emulsification of crude oil and hyperproduction of biosurfactants by a gamma ray-induced mutant of Pseudomonas aeruginosa. Lett. Appl. Microbiol. 21: 176-179 https://doi.org/10.1111/j.1472-765X.1995.tb01035.x
  74. Venkateswaran, K., T. Hoaki, M. Kato, and T. Maruyama (1995) Microbial degradation of resins fractionated from Arabian light crude oil. Can. J. Microbiol. 41: 418-424 https://doi.org/10.1139/m95-055
  75. Barathi, S. and N. Vasudevan (2001) Utilization of petroleum hydrocarbons by Pseudomonas fluorescens isolated from a petroleum-contaminated soil. Environ. Int. 26:413-416 https://doi.org/10.1016/S0160-4120(01)00021-6
  76. Abalos, A., M. Vinas, J. Sabate, M. A. Manresa, and A. M. Solanas (2004) Enhanced biodegradation of Casablanca crude oil by a microbial consortium in presence of a rhamnolipid produced by Pseudomonas aeruginosa AT10. Biodegradation 15: 249-260 https://doi.org/10.1023/B:BIOD.0000042915.28757.fb
  77. Cairns, W. L., D. G. Cooper, J. E. Zajic, J. M. Wood, and N. Kosaric (1982) Characterization of Nocardia amarae as a potent biological coalescing agent of water-oil emulsions. Appl. Environ. Microbiol. 43: 362-366
  78. Das, M. (2001) Characterization of de-emulsification capabilities of a Micrococcus species. Bioresour. Technol. 79: 15-22 https://doi.org/10.1016/S0960-8524(01)00039-6
  79. Nadarajah, N., A. Singh, and O. P. Ward (2002) Deemulsification of petroleum oil emulsion by a mixed bacterial culture. Process Biochem. 37: 1135-1141 https://doi.org/10.1016/S0032-9592(01)00325-9
  80. Park, S. H., J.-H. Lee, S.-H. Ko, D.-S. Lee, and H. K. Lee (2000) Demulsification of oil-in-water emulsions by aerial spores of a Streptomyces sp. Biotechnol. Lett. 22: 1389-1395 https://doi.org/10.1023/A:1005660901558
  81. Herman, D. C., P. M. Fedorak, M. D. MacKinnon, and J. W. Costerton (1994) Biodegradation of naphthenic acids by microbial populations indigenous to oil sands tailings. Can. J. Microbiol. 40: 467-477 https://doi.org/10.1139/m94-076
  82. Cooper, D. G. (1982) Biosurfactants and Enhanced Oil Recovery. pp. 112-114. Proceedings of Int. Conf. Microbial Enhanced Oil Recovery, May 16-21, Afton, UK
  83. Bryant, R. S. and J. Douglas (1987) Evaluation of microbial systems in porous media for enhanced oil recovery, paper SPE 16284, SPE Int. Symp. on Oilfield Chemistry, Feb. 4-6, San Antonio
  84. Hayes, M. E., K. R. Hrebenar, P. L. Murphy, L. E. Futch, Jr., J. F. Deal III, and P. L. Bolden, Jr. (1990) Bioemulsifier- stabilized hydrocarbosols. US Patent 4,943,390
  85. Ayala, M., R. Tinoco, V. Hernandez, P. Bremuntz, and R. Vazquez-Duhalt (1998) Biocatalyticoxidation of fuel as an alternative to biodesulfurization. Fuel Process Technol. 57: 101-111 https://doi.org/10.1016/S0378-3820(98)00076-9
  86. Ayala, M., N. R. Robledo, A. Lopez-Munguia, and R. Vazquez-Duhalt (2000) Substrate specificity and ionization potential in chloroperoxidase-catalyzed oxidation of diesel fuel. Environ. Sci. Technol. 34: 2804-2809 https://doi.org/10.1021/es991270o
  87. Huber, H. and K. O. Stetter (1998) Hyperthermophiles and their possible potential in biotechnology. J. Biotechnol. 64: 39-52 https://doi.org/10.1016/S0168-1656(98)00102-3
  88. Ward, O. P. and M. Moo-Young (1988) Thermostable enzymes. Biotechnol. Adv. 6: 39-69 https://doi.org/10.1016/0734-9750(88)90573-3
  89. Klein, J., D. E. A. Catcheside, R. Fakoussa, L. Gazso, W. Fritsche, M. Hoefer, F. Laborda, I. Margarit, H. J. Rehm, M. Reich-Walber, W. Sand, S. Schacht, H. Schmiers, L. Setti, and A. Teinbuechel (1999) Biological processing of fuels. Appl. Microbiol. Biotechnol. 52: 2-15 https://doi.org/10.1007/s002530051481