References
- Patil, K. R., M. Akesson, and J. Nielsen (2004) Use of genome-scale microbial models for metabolic engineering. Curr. Opin. Biotechnol. 15: 64-69 https://doi.org/10.1016/j.copbio.2003.11.003
- Nielsen, J. (2001) Metabolic engineering. Appl. Microbiol. Biotechnol. 55: 263-283 https://doi.org/10.1007/s002530000511
- Stephanopoulos, G., A. Aristidou, and J. Nielsen, (1998) Metabolic Engineering. Academic Press, San Diego, USA.
- Bulter, T., J. R. Bernstein, and J. C. Liao (2003) A perspective of metabolic engineering strategies: Moving up the systems hierarchy. Biotechnol. Bioeng. 84: 815-821 https://doi.org/10.1002/bit.10845
- Nielsen, J. (2003) It is all about metabolic fluxes. J. Bacteriol. 185: 7031-7035 https://doi.org/10.1128/JB.185.24.7031-7035.2003
- Bailey, J. E., A. Sburlati, V. Hatzimanikatis, K. Lee, W. A. Renner, and P. S. Tsai (1996) Inverse metabolic engineering: A strategy for directed genetic engineering of useful phenotypes. Biotechnol. Bioeng. 52: 109-121 https://doi.org/10.1002/(SICI)1097-0290(19961005)52:1<109::AID-BIT11>3.0.CO;2-J
- Martin, V. J., D. J. Pitera, S. T. Withers, J. D. Newman, and J. D. Keasling (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat. Biotechnol. 21: 796-802 https://doi.org/10.1038/nbt833
- Farmer, W. R. and J. C. Liao (2000) Improving lycopene production in Escherichia coli by engineering metabolic control. Nat. Biotechnol. 18: 533-537 https://doi.org/10.1038/75398
- Ostergaard, S., L. Olsson, M. Johnston, and J. Nielsen (2000) Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network. Nat. Biotechnol. 18: 1283-1286 https://doi.org/10.1038/82400
- Bailey, J. E. (1999) Lessons from metabolic engineering for functional genomics and drug discovery. Nat. Biotechnol. 17: 616-618 https://doi.org/10.1038/10794
- Bro, C. and J. Nielsen (2004) Impact of 'ome' analyses on inverse metabolic engineering. Metab. Eng. 6: 204-211 https://doi.org/10.1016/j.ymben.2003.11.005
- Ihmels, J., R. Levy, and N. Barkai (2004) Principles of transcriptional control in the metabolic network of Saccharomyces cerevisiae. Nat. Biotechnol. 22: 86-92 https://doi.org/10.1038/nbt918
- Ideker, T., V. Thorsson, J. A. Ranish, R. Christmas, J. Buhler, J. K. Eng, R. Bumgarner, D. R. Goodlett, R. Aebersold, and L. Hood (2001) Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292: 929-934 https://doi.org/10.1126/science.292.5518.929
- Patil, K. R. and J. Nielsen (2005) Uncovering transcriptional regulation of metabolism by using metabolic network topology. Proc. Natl. Acad. Sci. USA 102: 2685-2689 https://doi.org/10.1073/pnas.0406811102
- Price, N. D., J. A. Papin, C. H. Schilling, and B. O. Palsson (2003) Genome-scale microbial in silico models: The constraints-based approach. Trends Biotechnol. 21: 162-169 https://doi.org/10.1016/S0167-7799(03)00030-1
- Burgard, A. P., P. Pharkya, and C. D. Maranas (2003) OptKnock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng. 84: 647-657 https://doi.org/10.1002/bit.10803
- Ideker, T., T. Galitski, and L. Hood (2001) A new approach to decoding life: Systems biology. Annu. Rev. Genomics Hum. Genet. 2: 343-372 https://doi.org/10.1146/annurev.genom.2.1.343
- Nielsen, J. and L. Olsson (2002) An expanded role for microbial physiology in metabolic engineering and functional genomics: Moving towards systems biology. FEMS Yeast Res. 2: 175-181 https://doi.org/10.1111/j.1567-1364.2002.tb00083.x
- Weston, A. D. and L. Hood (2004) Systems biology, proteomics, and the future of health care: Toward predictive, preventative, and personalized medicine. J. Proteome Res. 3: 179-196 https://doi.org/10.1021/pr0499693
- Stephanopoulos, G., H. Alper, and J. Moxley (2004) Exploiting biological complexity for strain improvement through systems biology. Nat. Biotechnol. 22: 1261-1267 https://doi.org/10.1038/nbt1016
- Brent, R. (2004) A partnership between biology and engineering. Nat. Biotechnol. 22: 1211-1214 https://doi.org/10.1038/nbt1004-1211
- Hood, L. and R. M. Perlmutter (2004) The impact of systems approaches on biological problems in drug discovery. Nat. Biotechnol. 22: 1215-1217 https://doi.org/10.1038/nbt1004-1215
- Eisen, M. B., P. T. Spellman, P. O. Brown, and D. Botstein (1998) Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95: 14863-14868 https://doi.org/10.1073/pnas.95.25.14863
- Schena, M., R. A. Heller, T. P. Theriault, K. Konrad, E. Lachenmeier, and R. W. Davis (1998) Microarrays: Biotechnology's discovery platform for functional genomics. Trends Biotechnol. 16: 301-306 https://doi.org/10.1016/S0167-7799(98)01219-0
- Lipshutz, R. J., S. P. A. Fodor, T. R. Gingeras, and D. J. Lockhart (1999) High density synthetic oligonucleotide arrays. Nat. Genetics 21: 20-24 https://doi.org/10.1038/4447
- Hughes, T. R., M. J. Marton, A. R. Jones, C. J. Roberts, R. Stoughton, C. D. Armour, H. A. Bennett, E. Coffey, H. Dai, Y. D. He, M. J. Kidd, A. M. King, M. R. Meyer, D. Slade, P. Y. Lum, S. B. Stepaniants, D. D. Shoemaker, D. Gachotte,Chakraburtty,K.J. Simon, M. Bard, and S. H. Friend (2000) Functional discovery via a compendium of expression profiles. Cell 102: 109-126 https://doi.org/10.1016/S0092-8674(00)00015-5
- Lynch, M. D., R. T. Gill, and G. Stephanopoulos (2004) Mapping phenotypic landscapes using DNA micro-arrays. Metab. Eng. 6: 177-185 https://doi.org/10.1016/j.ymben.2004.01.002
- Stafford, D. E. and G. Stephanopoulos (2001) Metabolic engineering as an integrating platform for strain development. Curr. Opin. Microbiol. 4: 336-340 https://doi.org/10.1016/S1369-5274(00)00214-9
- Kao, C. M. (1999) Functional genomic technologies: Creating new paradigms for fundamental and applied biology. Biotechnol. Prog. 15: 304-311 https://doi.org/10.1021/bp990027q
- de Lichtenberg, U., L. J. Jensen, S. Brunak, and P. Bork (2005) Dynamic complex formation during the yeast cell cycle. Science 307: 724-727 https://doi.org/10.1126/science.1105103
- Laub, M. T., H. H. McAdams, T. Feldblyum, C. M. Fraser, and L. Shapiro (2000) Global analysis of the genetic network controlling a bacterial cell cycle. Science 290: 2144-2148 https://doi.org/10.1126/science.290.5499.2144
- Spellman, P. T., G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders, M. B. Eisen, P. O. Brown, D. Botstein, and B. Futcher (1998) Comprehensive identification of cell cycle- regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9: 3273-3297
- DeRisi, J. L., V. R. Iyer, and P. O. Brown (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278: 680-686 https://doi.org/10.1126/science.278.5338.680
- Gill, R. T., S. Wildt, Y. T. Yang, S. Ziesman, and G. Stephanopoulos (2002) Genome-wide screening for trait conferring genes using DNA microarrays. Proc. Natl. Acad. Sci. USA 99: 7033-7038 https://doi.org/10.1073/pnas.102154799
- Gill, R. T. (2003) Enabling inverse metabolic engineering through genomics. Curr. Opin. Biotechnol. 14: 484-490 https://doi.org/10.1016/S0958-1669(03)00116-2
- Gonzalez, R., H. Tao, J. E. Purvis, S. W. York, K. T. Shanmugam, and L. O. Ingram (2003) Gene arraybased identification of changes that contribute to ethanol tolerance in ethanologenic Escherichia coli: Comparison of KO11 (parent) to LY01 (resistant mutant). Biotechnol. Prog. 19: 612-623 https://doi.org/10.1021/bp025658q
- Lum, A. M., J. Huang, C. R. Hutchinson, and C. M. Kao (2004) Reverse engineering of industrial pharmaceuticalproducing actinomycete strains using DNA microarrays. Metab. Eng. 6: 186-196 https://doi.org/10.1016/j.ymben.2003.12.001
- Wahlbom, C. F., R. R. Cordero Otero, W. H. van Zyl, B. Hahn-Hagerdal, and L. J. Jonsson (2003) Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway. Appl. Environ. Microbiol. 69: 740-746 https://doi.org/10.1128/AEM.69.2.740-746.2003
- Askenazi, M., E. M. Driggers, D. A. Holtzman, T. C. Norman, S. Iverson, D. P. Zimmer, M. E. Boers, P. R. Blomquist, E. J. Martinez, A. W. Monreal, T. P. Feibelman, M. E. Mayorga, M. E. Maxon, K. Sykes, J. V. Tobin, E. Cordero, S. R. Salama, J. Trueheart, J. C. Royer, and K. T. Madden (2003) Integrating transcriptional and metabolite profiles to direct the engineering of lovastatinproducing fungal strains. Nat. Biotechnol. 21: 150-156 https://doi.org/10.1038/nbt781
- Oh, M. K. and J. C. Liao (2000) DNA microarray detection of metabolic responses to protein overproduction in Escherichia coli. Metab. Eng. 2: 201-209 https://doi.org/10.1006/mben.2000.0149
- Sanford, K., P. Soucaille, G. Whited, and G. Chotani (2002) Genomics to fluxomics and physiomics - pathway engineering. Curr. Opin. Microbiol. 5: 318-322 https://doi.org/10.1016/S1369-5274(02)00318-1
- Daran-Lapujade, P., M. L. Jansen, J. M. Daran, W. van Gulik, J. H. de Winde, and J. T. Pronk (2004) Role of transcriptional regulation in controlling fluxes in central carbon metabolism of Saccharomyces cerevisiae. A chemostat culture study. J. Biol. Chem. 279: 9125-9138 https://doi.org/10.1074/jbc.M309578200
- Tummala, S. B., S. G. Junne, and E. T. Papoutsakis (2003) Antisense RNA downregulation of coenzyme A transferase combined with alcohol aldehyde dehydrogenase overexpression leads to predominantly alcohologenic Clostridium acetobutylicum fermentations. J. Bacteriol. 185: 3644-3653 https://doi.org/10.1128/JB.185.12.3644-3653.2003
- Yoon, S. H., M. J. Han, S. Y. Lee, K. J. Jeong, and J. S. Yoo (2003) Combined transcriptome and proteome analysis of Escherichia coli during high cell density culture. Biotechnol. Bioeng. 81: 753-767 https://doi.org/10.1002/bit.10626
- Griffin, T. J., S. P. Gygi, T. Ideker, B. Rist, J. Eng, L. Hood, and R. Aebersold (2002) Complementary profiling of gene expression at the transcriptome and proteome levels in Saccharomyces cerevisiae. Mol. Cell. Proteomics 1: 323-333 https://doi.org/10.1074/mcp.M200001-MCP200
- Schena, M., D. Shalon, R. W. Davis, and P. O. Brown (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270: 467-470 https://doi.org/10.1126/science.270.5235.467
- Harrington, C. A., C. Rosenow, and J. Retief (2000) Monitoring gene expression using DNA microarrays. Curr. Opin. Microbiol. 3: 285-291 https://doi.org/10.1016/S1369-5274(00)00091-6
- Lockhart, D. J. and E. A. Winzeler (2000) Genomics, gene expression and DNA arrays. Nature 405: 827-836 https://doi.org/10.1038/35015701
- Knudsen, S. (2004) Guide to Analysis of DNA Microarray Data. John Wiley & Sons, Inc., Hoboken, NJ, USA
- Parada, G. and F. Acevedo (1983) On the relation of temperature and RNA content to the specific growth rate in Saccharomyces cerevisiae. Biotechnol. Bioeng. 25: 2785-2788 https://doi.org/10.1002/bit.260251120
- Waldron, C. and F. Lacroute (1975) Effect of growth rate on the amounts of ribosomal and transfer ribonucleic acids in yeast. J. Bacteriol. 122: 855-865
- Gasch, A. P., P. T. Spellman, C. M. Kao, O. Carmel- Harel, M. B. Eisen, G. Storz, D. Botstein, and P. O. Brown (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 11: 4241-4257 https://doi.org/10.1091/mbc.11.12.4241
- Hayes, A., N. Zhang, J. Wu, P. R. Butler, N. C. Hauser, J. D. Hoheisel, F. L. Lim, A. D. Sharrocks, and S. G. Oliver (2002) Hybridization array technology coupled with chemostat culture: Tools to interrogate gene expression in Saccharomyces cerevisiae. Methods 26: 281-290 https://doi.org/10.1016/S1046-2023(02)00032-4
- Leung, Y. F. and D. Cavalieri (2003) Fundamentals of cDNA microarray data analysis. Trends Genet. 19: 649-659 https://doi.org/10.1016/j.tig.2003.09.015
- Brazma, A., P. Hingamp, J. Quackenbush, G. Sherlock, P. Spellman, C. Stoeckert, J. Aach, W. Ansorge, C. A. Ball, H. C. Causton, T. Gaasterland, P. Glenisson, F. C. Holstege, I. F. Kim, V. Markowitz, J. C. Matese, H. Parkinson, A. Robinson, U. Sarkans, S. Schulze-Kremer, J. Stewart, R. Taylor, J. Vilo, and M. Vingron (2001) Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat. Genet. 29: 365-371 https://doi.org/10.1038/ng1201-365
- Quackenbush, J. (2001) Computational analysis of microarray data. Nat. Rev. Genetics 2: 418-427 https://doi.org/10.1038/35076576
- Schadt, E. E., C. Li, C. Su, and W. H. Wong (2000) Analyzing high-density oligonucleotide gene expression array data. J. Cell. Biochem. 80: 192-202 https://doi.org/10.1002/1097-4644(20010201)80:2<192::AID-JCB50>3.0.CO;2-W
- Workman, C., L. Jensen, H. Jarmer, R. Berka, L. Gautier, H. Nielser, H. H. Saxild, C. Nielsen, S. Brunak, and S. Knudsen (2002) A new non-linear normalization method for reducing variability in DNA microarray experiments. Genome Biology 3: research0048
- Irizarry, R. A., B. Hobbs, F. Collin, Y. D. Beazer-Barclay, K. J. Antonellis, Scherf, U.and T. P. Speed (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4: 249-264 https://doi.org/10.1093/biostatistics/4.2.249
- Li, C. and W. H. Wong (2001) Model-based analysis of oligonucleotide arrays: Model validation, design issues and standard error application. Genome Biology 2: research0032
- Li, C. and W. H. Wong (2001) Model-based analysis of oligonucleotide arrays: Expression index computation and outlier detection. Proc. Natl. Acad. Sci. USA 98: 31-36 https://doi.org/10.1073/pnas.011404098
- Zhou, Y. and R. Abagyan (2002) Match-only integral distribution (MOID) algorithm for high-density oligonucleotide array analysis. BMC Bioinformatics 3: 3
- Naef, F., D. A. Lim, N. Patil, and M. Magnasco (2002) DNA hybridization to mismatched templates: A chip study. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 65: 040902
- Chudin, E., R. Walker, A. Kosaka, S. X. Wu, D. Rabert, T. K. Chang, and D. E. Kreder (2002) Assessment of the relationship between signal intensities and transcript concentration for Affymetrix GeneChip arrays. Genome Biol. 3: Research0005
- Ideker, T., V. Thorsson, A. F. Siegel, and L. E. Hood (2000) Testing for differentially-expressed genes by maximum-likelihood analysis of microarray data. J. Comput. Biol. 7: 805-817 https://doi.org/10.1089/10665270050514945
- Storey, J. D. and R. Tibshirani (2003) Statistical significance for genome wide studies. Proc. Natl. Acad. Sci. USA 100: 9440-9445 https://doi.org/10.1073/pnas.1530509100
- Taguchi, Y. H. and Y. Oono (2005) Relational patterns of gene expression via non-metric multidimensional scaling analysis. Bioinformatics 21: 730-740 https://doi.org/10.1093/bioinformatics/bti067
- Yeung, K. Y. and W. L. Ruzzo (2001) Principal component analysis for clustering gene expression data. Bioinformatics 17: 763-774 https://doi.org/10.1093/bioinformatics/17.9.763
- Alter, O., P. O. Brown, and D. Botstein (2000) Singular value decomposition for genome-wide expression data processing and modeling. Proc. Natl. Acad. Sci. USA 97: 10101-10106 https://doi.org/10.1073/pnas.97.18.10101
- Sherlock, G. (2000) Analysis of large-scale gene expression data. Curr. Opin. Immunol. 12: 201-205 https://doi.org/10.1016/S0952-7915(99)00074-6
- Valafar, F. (2002) Pattern recognition techniques in microarray data analysis: A survey. Ann. NY Acad. Sci. 980: 41-64 https://doi.org/10.1111/j.1749-6632.2002.tb04888.x
- Dharmadi, Y. and R. Gonzalez (2004) DNA microarrays: Experimental issues, data analysis, and application to bacterial systems. Biotechnol. Prog. 20: 1309-1324 https://doi.org/10.1021/bp0400240
- Grotkjaer, T. and J. Nielsen (2004) Enhancing yeast transcription analysis through integration of heterogeneous data. Curr. Genomics 5: 673-686 https://doi.org/10.2174/1389202043348472
- Gibbons, F. D. and F. P. Roth (2002) Judging the quality of gene expression-based clustering methods using gene annotation. Genome Res. 12: 1574-1581 https://doi.org/10.1101/gr.397002
- Tamayo, P., D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, E. Dmitrovsky, E. S. Lander, and T. R. Golub (1999) Interpreting patterns of gene expression with selforganizing maps: Methods and application to hematopoietic differentiation. Proc. Natl. Acad. Sci. USA 96: 2907-2912 https://doi.org/10.1073/pnas.96.6.2907
- Cherepinsky, V., J. Feng, M. Rejali, and B. Mishra (2003) Shrinkage-based similarity metric for cluster analysis of microarray data. Proc. Natl. Acad. Sci. USA 100: 9668-9673 https://doi.org/10.1073/pnas.1633770100
- Heyer, L. J., S. Kruglyak, and S. Yooseph (1999) Exploring expression data: Identification and analysis of coexpressed genes. Genome Res. 9: 1106-1115 https://doi.org/10.1101/gr.9.11.1106
- Hastie, T., R. Tibshirani, and J. Friedman, (2001) The Elements of Statistical Learning - Data Mining, Inference, and Prediction. Springer-Verlag, New York, NY, USA.
- MacKay, D. J. C. (2003) Information Theory, Inference and Learning Algorithms. Cambridge University Press, Cambridge, UK.
- Blatt, M., S. Wiseman, and E. Domany (1996) Superparamagnetic clustering of data. Phys. Rev. Lett. 76: 3251-3254 https://doi.org/10.1103/PhysRevLett.76.3251
- Kaminski, N. and N. Friedman (2002) Practical approaches to analyzing results of microarray experiments. Am. J. Respir. Cell Mol. Biol. 27: 125-132 https://doi.org/10.1165/ajrcmb.27.2.f247
- Kerr, M. K. and G. A. Churchill (2001) Bootstrapping cluster analysis: Assessing the reliability of conclusions from microarray experiments. Proc. Natl. Acad. Sci. USA 98: 8961-8965 https://doi.org/10.1073/pnas.161273698
- McShane, L. M., M. D. Radmacher, B. Freidlin, R. Yu, M. C. Li, and R. Simon (2002) Methods for assessing reproducibility of clustering patterns observed in analyses of microarray data. Bioinformatics 18: 1462-1469 https://doi.org/10.1093/bioinformatics/18.11.1462
- Zhang, K. and H. Zhao (2000) Assessing reliability of gene clusters from gene expression data. Funct. Integr. Genomics 1: 156-173 https://doi.org/10.1007/s101420000019
- Zhu, J. and M. Q. Zhang (2000) Cluster, function and promoter: Analysis of yeast expression array. Pac. Symp. Biocomput. 479-490
- Wei, G. H., D. P. Liu, and C. C. Liang (2004) Charting gene regulatory networks: Strategies, challenges and perspectives. Biochem. J. 381: 1-12 https://doi.org/10.1042/BJ20040311
- Pilpel, Y., P. Sudarsanam, and G. M. Church (2001) Identifying regulatory networks by combinatorial analysis of promoter elements. Nat. Genet. 29: 153-159 https://doi.org/10.1038/ng724
- Banerjee, N. and M. Q. Zhang (2002) Functional genomics as applied to mapping transcription regulatory networks. Curr. Opin. Microbiol. 5: 313-317 https://doi.org/10.1016/S1369-5274(02)00322-3
- Brown, M. P., W. N. Grundy, D. Lin, N. Cristianini, C. W. Sugnet, T. S. Furey, M. Ares, Jr., and D. Haussler (2000) Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc. Natl. Acad. Sci. USA 97: 262-267 https://doi.org/10.1073/pnas.97.1.262
- Miki, R., K. Kadota, H. Bono, Y. Mizuno, Y. Tomaru, P. Carninci, M. Itoh, K. Shibata, J. Kawai, H. Konno, S. Watanabe, K. Sato, Y. Tokusumi, N. Kikuchi, Y. Ishii, Y. Hamaguchi, I. Nishizuka, H. Goto,H. Nitanda, S. Satomi, A. Yoshiki, M. Kusakabe, J. L. DeRisi, M. B. Eisen, V. R. Iyer, P.O. Brown, M. Muramatsu, H. Shimada, Y. Okazaki, and Y. Hayashizaki (2001) Delineating developmental and metabolic pathways in vivo by expression profiling using the RIKEN set of 18,816 full-length enriched mouse cDNA arrays. Proc. Natl. Acad. Sci. 98: 2199-2204 蠋 Āن㒁匈 Ā Ā Ā 꼀 ḁ ᤐ 돀䢴?⨀ 塨?⨀ ?⨀ 돐 ?잖⨀ ?잖⨀ —?⨀ 줏 덐 〔?⨀ 젏 ꠏ TȌ耀 Ƶऀ | B. Farnworth and P. A. Dolhan, Textile Res. J., 55, 627 (1985)᠀ 쀎?⨀ ੧३ 㐀 㠧?⨀ 䍧३ ऀ ?⨀ 䵧३ 砚?⨀ 栆?⨀ 쐂?⨀ 礀考㎺Ȁ㎺Ȁ ̀ 㠳?⨀ Ā! 㪤 Ā ሀ 考㎺Ȁ㎺Ȁ ̀ Ā Ā 쐂?⨀ ᑠ Āက ₪舀 缀 舀 ?⨀ https://doi.org/10.1073/pnas.041605498
- Bro, C., B. Regenberg, and J. Nielsen (2004) Genomewide transcriptional response of a Saccharomyces cerevisiae strain with an altered redox metabolism. Biotechnol. Bioeng. 85: 269-276 https://doi.org/10.1002/bit.10899
- Grosu, P., J. P. Townsend, D. L. Hartl, and D. Cavalieri (2002) Pathway Processor: A tool for integrating wholegenome expression results into metabolic networks. Genome Res. 12: 1121-1126 https://doi.org/10.1101/gr.226602
- Zien, A., R. Kuffner, R. Zimmer, and T. Lengauer (2000) Analysis of gene expression data with pathway scores. Proc. Int. Conf. Intell. Syst. Mol. Biol. 8: 407-417
- Pavlidis, P., D. P. Lewis, and W. S. Noble (2002) Exploring gene expression data with class scores. Pac. Symp. Biocomput. 474-485
- Nakao, M., H. Bono, S. Kawashima, T. Kamiya, K. Sato, S. Goto, and M. Kanehisa (1999) Genome-scale gene expression analysis and pathway reconstruction in KEGG. Genome Inform. Ser. Workshop Genome Inform. 10: 94-103
- Mateos, A., J. Dopazo, R. Jansen, Y. Tu, M. Gerstein, and G. Stolovitzky (2002) Systematic learning of gene functional classes from DNA array expression data by using multilayer perceptrons. Genome Res. 12: 1703-1715 https://doi.org/10.1101/gr.192502
- Breitling, R., A. Amtmann, and P. Herzyk (2004) Graphbased iterative Group Analysis enhances microarray interpretation. BMC Bioinformatics. 5: 100 https://doi.org/10.1186/1471-2105-5-100
- Jansen, R., D. Greenbaum, and M. Gerstein (2002) Relating whole-genome expression data with protein-protein interactions. Genome Res. 12: 37-46 https://doi.org/10.1101/gr.205602
- Schuster, S., D. A. Fell, and T. Dandekar (2000) A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat. Biotechnol. 18: 326-332 https://doi.org/10.1038/73786
- Stelling, J., S. Klamt, K. Bettenbrock, S. Schuster, and E. D. Gilles (2002) Metabolic network structure determines key aspects of functionality and regulation. Nature 420: 190-193 https://doi.org/10.1038/nature01166
- Cakir, T., B. Kirdar, and K. O. Ulgen (2004) Metabolic pathway analysis of yeast strengthens the bridge between transcriptomics and metabolic networks. Biotechnol. Bioeng. 86: 251-260 https://doi.org/10.1002/bit.20020
- Pandey, R., R. K. Guru, and D. W. Mount (2004) Pathway miner: Extracting gene association networks from molecular pathways for predicting the biological significance of gene expression microarray data. Bioinformatics 20: 2156-2158 https://doi.org/10.1093/bioinformatics/bth215
- Jeong, H., B. Tombor, R. Albert, Z. N. Oltvai, and A. L. Barabasi (2000) The large-scale organization of metabolic networks. Nature 407: 651-654 https://doi.org/10.1038/35036627
- Fell, D. A. and A. Wagner (2000) The small world of metabolism. Nat. Biotechnol. 18: 1121-1122 https://doi.org/10.1038/81025
- Ideker, T., O. Ozier, B. Schwikowski, and A. F. Siegel (2002) Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18 S233-S240 https://doi.org/10.1093/bioinformatics/18.suppl_1.S233
- Majewski, R. A. and M. M. Domach (1990) Simple constrained- optimization view of acetate overflow in E. coli. Biotechnol. Bioeng. 35: 732-738 https://doi.org/10.1002/bit.260350711
- Burgard, A. P. and C. D. Maranas (2003) Optimizationbased framework for inferring and testing hypothesized metabolic objective functions. Biotechnol. Bioeng. 82: 670-677 https://doi.org/10.1002/bit.10617
- Burgard, A. P., E. V. Nikolaev, C. H. Schilling, and C. D. Maranas (2004) Flux coupling analysis of genome-scale metabolic network reconstructions. Genome Res. 14: 301-312 https://doi.org/10.1101/gr.1926504
- Pharkya, P., A. P. Burgard, and C. D. Maranas (2003) Exploring the overproduction of amino acids using the bilevel optimization framework OptKnock. Biotechnol. Bioeng. 84: 887-899 https://doi.org/10.1002/bit.10857
- Segre, D., D. Vitkup, and G. M. Church (2002) Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl. Acad. Sci. USA 99: 15112-15117 https://doi.org/10.1073/pnas.232349399
- Akesson, M., J. Forster, and J. Nielsen (2004) Integration of gene expression data into genome-scale metabolic models. Metab. Eng. 6: 285-293 https://doi.org/10.1016/j.ymben.2003.12.002
- Covert, M. W., E. M. Knight, J. L. Reed, M. J. Herrgard, and B. O. Palsson (2004) Integrating high-throughput and computational data elucidates bacterial networks. Nature 429: 92-96 https://doi.org/10.1038/nature02456
- Covert, M. W. and B. O. Palsson (2003) Constraintsbased models: regulation of gene expression reduces the steady-state solution space. J. Theor. Biol. 221: 309-325 https://doi.org/10.1006/jtbi.2003.3071
- Covert, M. W., C. H. Schilling, and B. Palsson (2001) Regulation of gene expression in flux balance models of metabolism. J. Theor. Biol. 213: 73-88 https://doi.org/10.1006/jtbi.2001.2405