Modulatory Effects of 21 kinds of Medicinal Herbs Including Herba Pogostemi (Agastache rugosa) on Nitric Oxide Production in Macrophage Cell line RAW 264.7 cells

곽향(Agastache rugosa)을 포함한 21종의 한약재가 대식세포주 RAW 264.7 세포의 nitric oxide(NO) 생산 조절에 미치는 효과

  • Kim, Seung-Hyun (Department of Biological Science, Ajou University) ;
  • Kang, Mi-Young (Department of Food science and Nutrition, Kyungpook National University) ;
  • Nam, Seok-Hyun (Department of Biological Science, Ajou University)
  • Published : 2005.12.31

Abstract

Aqueous extracts were prepared from 21 medicinal herbs including Herba Pogostemi (Agastache rugosa) to examine their modulatory effects on NO production in mouse macrophage cell line RAW264.7 cells. While almost all medicinal herb extracts failed to show marked scavenging activities to NO produced by LPS stimulation, only Herba Pogostemi showed a rather strong induction of NO production in RAW264.7 cells without stimulation with LPS. When we treated the cell with $200{\mu}M\;of\;N^G-monomethyl-L-arginine\;(N^GMMA)$, a NOS2 inhibitor, a significant reduction in NO production could be observed. Moreover, a treatment of $100{\mu}M$ pyrrolidine dithiocarbamate (PDTC) led to about a 79% reduction of NO production. These results demonstrated that the aqueous extract of Herba Pogostemi might provide a second signal for the expression of NOS2 in RAW264.7 cells, and suggested that Herba Pogostemi induces NO production through L-argininedependent pathway.

마우스 대식세포주인 RAW264.7 세포에서 곽향(Agastache rugosa)을 포함한 21종의 한약재에서 제조한 열수추출물의 NO생산에 대한 조절효과를 조사하였다. 모든 한약재 추출물은 LPS자극으로 생산된 NO에 대하여 뚜렷한 소거활성을 보이지 않았으나, LPS 무처리 조건에서 곽향이 RAW264.7 세포의 NO생산을 강력하게 유도하였다. $200{\mu}M$의 NOS2의 저해제인 $N^G-monomethyl-L-arginine(N^GMMA$)의 처리에 의하여 곽향이 유도하는 NO 생산은 유의적으로 감소되었다. 또한 $NF-{\kappa}B$ 저해제인 pyrrolidine dithiocarbamate(PDTC)의 처리로 NO 생산이 $100{\mu}M$에서 약 79%까지 감소하였다. 이상의 실험 결과는 곽향 열수추출물이 RAW264.7 세포의 NOS2 발현의 이차적인 세포 내 신호를 발생시킬 수 있으며, NO는 L-arginine 의존적 경로에 의하여 생성된다는 사실을 시사하였다.

Keywords

References

  1. Nathan, C. F. (1992) Nitric oxide as a secretory product of mammalian cells. FASEB J. 6, 3051-3064
  2. Furchgott, F. R. and Zawadzki, J. V. (1980) The obligatory role of endothelium cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288, 373-376 https://doi.org/10.1038/288373a0
  3. Guzik, T. J., Korbut, R. and Adamek-Guzik, T. (2003) Nitric oxide and superoxide in inflammation and immune response. J. Physiol. Pharmacol. 54, 469-487
  4. Ross, R. and Reske-Kunz, A. B. (2001) The role of nitric oxide in contact hypersensitivity. Int. Immunopharmacol. 1, 1469-1478 https://doi.org/10.1016/S1567-5769(01)00091-1
  5. Gantt, K. R., Goldman, T. L., McCormick, M. L., Miller, M. A., Jeronimo, S. M., Nascimento, E. T., Britigan, B. E. and Wilson, M. E. (2001) Oxidative response of human and murine macrophages during phagocytosis of Leishmania chagasi. J. Immunol. 167, 893-901
  6. Hogg, N., Kalyanaraman, B. and Darley-Usmar, V. (1995) In The Oxygen paradox: Oxidant and antioxidant effects of nitric oxide and superoxide in the vasculature. Cleup University Press, Paradona, Italy
  7. Channon, K. M. and Guzik, T. J. (2002) Mechanisms of superoxide production in human blood vessels: relationship to endothelial dysfunction, clinical and genetic risk factors. J. Physiol. Pharmacol. 53, 515-524
  8. Ischiropoulos, H. and al-Mehdi, A. B. (1995) Peroxynitrite-mediated oxidative protein modifications. FEBS Lett. 364, 279-282 https://doi.org/10.1016/0014-5793(95)00307-U
  9. Samlowski, W. E., Peterson, R. Cuzzocrea, S., Macarthur, H., Burton, D., McGregor, J. R. and Salvemini, D. (2003) A nonpeptidyl mimic of superoxide dismutase, M40403, inhibits dose-limiting hypotension associated with interleukin-2 and increase its antitumor effects. Nat. Med. 9, 750-755 https://doi.org/10.1038/nm874
  10. van der Veen, R. C. (2001) Nitric oxide and T cell immunity. Int. Immunopharmacol. 1, 1491-1500 https://doi.org/10.1016/S1567-5769(01)00093-5
  11. Nam, S. H. and Kang, M. Y. (2000) Screening of antioxidative activity of hot-water extracts from medicinal plants. J. Korean Soc. Agric. Chem. Biotechnol. 43, 141-147
  12. Ahn, D.-K. (1999) Illustrated book of korean medicinal herbs. Kyohaksa, Seoul, Korea
  13. Nam, S. H., Jung, J. E. and Kang, M. Y. (1999) Screening of the mutagenicity and antimutagenicity of the hot-water extracts from medicianl plants. J. Korean Soc. Agric. Chem. Biotechnol. 42, 344-350
  14. Murakami, A., Gao, G, Kim, O. K., Omura, M., Yano, M., Ito, I., Furukawa, H., Jiwajinda, S., Koshimizu, K. and Ohigashi, H. (1999) Identification of courmarins from the fruit of Citrus hystrix DC as inhibitor of nitric oxide generation in mouse macrophage RAW 264.7 cells. J. Agric. Food Chem. 47, 333-339 https://doi.org/10.1021/jf980523e
  15. Mosmann, T. (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxic assay. J. Immunol. Methods 65, 55-63 https://doi.org/10.1016/0022-1759(83)90303-4
  16. Chomczynski, P. and Sacchi, N. (1987) Single-step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156-159
  17. Kochanowski, B. and Reischl, U. (1999) In Methods in Molecular Medicine: Quantitative PCR Protocols. Humana Press, Totowa, New Jersey, USA
  18. Takao, Y., Tetsuro, U., Akemi, A. and Fujiro, S. (1997) Nitric oxide is an effector molecule in inhibition of tumor cell growth by rIFN-$\gamma$-activated rat neutrophils. Int. J. Cancer 71, 223-230 https://doi.org/10.1002/(SICI)1097-0215(19970410)71:2<223::AID-IJC17>3.0.CO;2-I
  19. Schreck, R., Meier, B., Mannel, D. N., Droge, W. and Baeuerle, P. A. (1992) Dithiocarbamates as potent inhibitors of nuclear factor kappa B activation in intact cells. J. Exp. Med. 175, 1181-1194 https://doi.org/10.1084/jem.175.5.1181
  20. Lowenstein, C. J., Alley, E. W., Raval, P., Snowman, A. M., Snyder, S. H., Russell, S. W. and Murphy, W. J. (1993) Macrophage nitric oxide synthase gene: two upstream regions mediate induction by interferon and lipopolysaccharide. Proc. Natl. Acad. Sci. USA 90, 9730-9734 https://doi.org/10.1073/pnas.90.20.9730
  21. Matsuura, M., Saito, S., Hirai, Y. and Okamura, H. (2003) A pathway through interferon-$\gamma$ is the main pathway for induction of nitric oxide upon stimulation with bacterial lipopolysaccharide in mouse peritoneal cells. Eur. J. Biochem. 270, 4016-4025 https://doi.org/10.1046/j.1432-1033.2003.03792.x
  22. Funatogawa, K., Matsuura, M., Nakano, M., Kiso, M. and Hasegawa, A. (1998) Relationship of structure and biological activity of monosaccharide lipid A analoges to induction of nitric oxide production by murine macrophage RAW264.7 cells. Infect. Immun. 66, 5792-5798
  23. Bogdan, C. (2001) Nitric oxide and immune response. Nat. Immunol. 2, 907-916 https://doi.org/10.1038/ni1001-907