Journal of Korea Multimedia Society (한국멀티미디어학회논문지)
- Volume 8 Issue 10
- /
- Pages.1369-1382
- /
- 2005
- /
- 1229-7771(pISSN)
- /
- 2384-0102(eISSN)
Vehicle Area Segmentation from Road Scenes Using Grid-Based Feature Values
격자 단위 특징값을 이용한 도로 영상의 차량 영역 분할
Abstract
Vehicle segmentation, which extracts vehicle areas from road scenes, is one of the fundamental opera tions in lots of application areas including Intelligent Transportation Systems, and so on. We present a vehicle segmentation approach for still images captured from outdoor CCD cameras mounted on the supporting poles. We first divided the input image into a set of two-dimensional grids and then calculate the feature values of the edges for each grid. Through analyzing the feature values statistically, we can find the optimal rectangular grid area of the vehicle. Our preprocessing process calculates the statistics values for the feature values from background images captured under various circumstances. For a car image, we compare its feature values to the statistics values of the background images to finally decide whether the grid belongs to the vehicle area or not. We use dynamic programming technique to find the optimal rectangular gird area from these candidate grids. Based on the statistics analysis and global search techniques, our method is more systematic compared to the previous methods which usually rely on a kind of heuristics. Additionally, the statistics analysis achieves high reliability against noises and errors due to brightness changes, camera tremors, etc. Our prototype implementation performs the vehicle segmentation in average 0.150 second for each of
도로 영상에서 차량 영역을 분할하는 차량 영역 분할(vehicle segmentation) 문제는 지능형 교통 시스템을 비롯한 다양한 응용 분야들에서 중요하게 사용되는 기본 연산(fundamental operation)이다. 본 연구에서는 야외의 도로 상에 설치된 CCD카메라에서 촬영된 정지 영상으로부터 차량 영역을 찾아내는 효율적인 방법을 제안한다 제안하는 방법은 입력되는 영상들을 격자 단위로 분할하여 각 격자에서의 에지 검출 결과를 대표하는 특징값(feature value)들을 통계적으로 분석한 후, 이를 바탕으로 최적해를 구한다. 전처리 과정에서는 다양한 외부 환경에서 촬영한 배경 영상들에 대해서 각 격자에서의 특징값들을 통계 처리한다. 입력된 차량 영상에서는 각 격자의 특징값이 배경 영상의 대응되는 격자에서의 특징값과 통계적으로 얼마나 오차를 보이냐에 따라, 배경 영역인지 차량 영역인지를 판단한다. 격자 별로 차량 영역에 해당하는 지를 판정한 뒤, 이 결과에 동적 프로그래밍(dynamic Programming) 기법을 이용하여 차량을 포함하는 최적의 직사각형 영역을 찾아낸다. 본 논문에서 제안하는 방법은 통계 처리와 전역 탐색 기법을 사용하므로 휴리스틱에 주로 의존하는 기존 연구들에 비해 좀더 체계적이다. 또한, 배경 영상에 대한 통계 처리는 흐리거나 맑은 등의 날씨 변화 및 바람이나 진동에 의한 카메라의 흔들림과 같은 다양한 외부 요인들이 가져올 수 있는 노이즈나 오차에 대해서도 높은 신뢰성을 보여준다. 제안하는 방법을 구현한 프로토타입 시스템은