Profiling of Metabolites and Proteins from Eschscholtzia californica induced by Yeast Extract

Yeast Extract로 처리된 Eschscholtzia californica의 Metabolite와 Protein의 변화

  • Cho Hwa-Young (School of Environmental Science and Engineering, POSTECH) ;
  • Park Jeong-Jin (Department of Chemical Engineering, POSTECH) ;
  • Yoon Sung-Yong (Institute of Environment and Energy Technology, POSTECH) ;
  • Part Jong Moon (School of Environmental Science and Engineering, POSTECH)
  • 조화영 (포항공과대학교 환경공학부) ;
  • 박정진 (포항공과대학교 화학공학과) ;
  • 윤성용 (포항공과대학교 환경연구소) ;
  • 박종문 (포항공과대학교 환경공학부)
  • Published : 2005.08.01

Abstract

Benzophenanthridine alkaloids - sanguinarine, chelirubine, macarpine, and chelerythrine are produced from Eschscholtzia californica (Californica Poppy, used as a sedative by Native Americans) and most of them are derived from dihydrosanguinarine. The properties of sanguinarine are the basis of its antimicrobial activity and its use in chemosurgery and skin cancer excision. For overproduction of sanguinarine from E. californica, yeast extract was used as elicitor and the elicited cell's metabolites were checked. Sanguinarine production was increased intracelluarly about 8 times in the cell and 5 times extracelluarly. We have peformed proteomic analysis of proteins sequentially extracted from E. califormica suspended cells which were cultured with elicitor, an increase of spot intensity was seen at 24 hours following elicitation. These proteins were separated by two-dimensional electrophoresis (2-DE). We found several spots that were expected to be related to benzophenanthridine alkaloids production by comparing the production profiles of metabolites such as sanguinarine. These results demonstrate the use of metabolite analysis as a tool for detecting target proteins related to metabolites production pathway.

Sanguinarine은 천연 항균성 물질로 의약품, 생활용품 그리고 화장품 등 그 이용은 다양하나 가격이 비싸고 수율이 따르지 못하는 점을 식물세포배양을 통하여 해결할 수 있을 것으로 기대된다. Sanguinarine의 생산을 극대화하기 위하여 전통적인 방법인 환경적 요인을 고려한 cell selection방법과 유전적 접근인 protein의 변화를 동시에 관찰하였다. Yeast extract를 elicitor로 이용하였을 경우에 control에서는 관찰 할 수 없었던 sanguinarine에 해당하는 오렌지색의 형광을 볼 수 있었으며, 실제 metabolite의 분석에서도 sanguinarine의 증가를 확인 할 수 있었다. 세포 내부에서는 sanguinarine이 약 8배의 증가를 보였으며 배지에서는 약 5배의 증가를 보였다. Protein 역시 2-D electrophoresis로 확인한 결과 intensity가 $5\%,\;88\%,\;6.4\%$의 증가, 일정, 감소를 보인 spot들이 elicitor 처리 후 세포에서는 $34\%,\;39.4\%\;26.5\%$로 intensity가 증가된 spot들이 더많이 검출되었다. 본 연구에서는 sanguinarine을 yeast extract를 이용해서 생산량을 증가시키고 sanguinarine의 생산과 관련된 protein의 변화에 대해서 알아보고자 하였다. 본 예와 같은 실험 연구방법이 식물이차대사산물 생산성에 관련된 protein군을 규명하는데 초석이 될 수 있을 것으로 기대된다.

Keywords

References

  1. Yun, E. J. (2002), Metabolic engineering of medicinal plants for tropane alkaloid production, K. J. Plant Biotech 29, 199-207 https://doi.org/10.5010/JPB.2002.29.3.199
  2. Verpoorte, R., Heijden, R., and J. Memelink (2000), Engineering the plant cell factory for secondary metabolite production, Transgenic Res. 9, 323-343 https://doi.org/10.1023/A:1008966404981
  3. Romeo, R., S. Teresa, B. Christopher, and K. Tajalli (2003), Elicitation of plants and microbial cell systems, Biotechnol. Appl. Biochem. 37, 91-102 https://doi.org/10.1042/BA20020118
  4. Marcos, M., B. Gunter, and E. T. Paiva (2003), Pathogen derived elicitors:searching for receptors in plants, Mol. plant pathol. 4, 73-79 https://doi.org/10.1046/j.1364-3703.2003.00150.x
  5. Amason, J. T., B. Guerin, M. M. Kraml., B. Mehta, R. Redmond, and J. C. Scaiano (1992), Phototoxic and Photochemical Properties of Sanguinarine, Photochem. Photobio. 55, 35-38 https://doi.org/10.1111/j.1751-1097.1992.tb04206.x
  6. Facchini, P. J. and D. A. Bird (1998), Developmental Regulation of Benzylisoquinoline Alkaloid Biosynthesis in Opium Poppy Plants and Tissue Cultures In Vitro Cellular & Developmental Biology, Plant 34, 69-79 https://doi.org/10.1007/BF02823126
  7. Blechert, S., W. Brodschehn, S. Holder, L. Kammerer, T. M. Kutchan, M. J. Mueller, Z. Xia, and M. H. Zenk (1995), The octadecanoic pathway: Signal molecules for the regulation of secondary pathways, Proc. Natl. Acad. Sci. USA 92, 4099-4105
  8. Dicosmo, F. and M. Misawa (1995), Plant, Cell and Tissue, Culture, Alternatives for Metabolite Production, Biotechnol. Adv. 13, 425-453 https://doi.org/10.1016/0734-9750(95)02005-N
  9. Samanani, N. and P. J. Facchini (2001), Isolation and partial characterization of norcoclaurine synthase, the ftrst committed step in benzylisoquinoline alkaloid biosynthesis, from opium poppy, Planta 213, 898-906 https://doi.org/10.1007/s004250100581
  10. Bird, D. A. and P. J. Facchini (2001), Berberine bridge enzyme, a key branch-point enzyme in benzylisoquinoline alkaloid biosynthesis, contains a vacuolar sorting detenninant, Planta 213, 888-897 https://doi.org/10.1007/s004250100582
  11. Park, S. U., Min Yu, and P. J. Facchini (2003), Modulation of berberine bridge enzyme levels in transgenic root culture on California poppy alters the accumulation of benzophenanthridine alkaloids, Plant Molecular Bio. 51, 153-164 https://doi.org/10.1023/A:1021199311049
  12. Archambault, J., R. D. Williams, C. Bedard, and C. Chavarie (1996), Production of sanguinarine byelicited plant cell culture J. shake flask suspension culture, Biotech. 46, 95-105 https://doi.org/10.2144/000113067
  13. http://www.cheric.org/ippage/p/ipdata/2004/10/file/p200410-101.pdf
  14. Archambault, J., R D. Williams, M. Perrier, and C. Chavarie (1996), Production of Sanguinarine by Elicited Plant Cell Culture 3. Immobilized BioreactorCultures,J. Biotechnol. 46, 121-129 https://doi.org/10.1016/0168-1656(95)00186-7
  15. Kumar, G. S., A. Das, and M. Maiti (1997), Photochemical Conversion of Sanguinarine to Oxysanguinarine. J. Photochem. Photo biol. A, Chem. 111,51-56 https://doi.org/10.1016/S1010-6030(97)00246-3
  16. Williams, RD., N. Chauret, C. Bedard, and J. Archambault (1992), Effect of polymeric adsorbents on the production of sanguinarine by Papaver somniferum cell cultures, Biotechnol. Bioeng. 40,971-977 https://doi.org/10.1002/bit.260400813
  17. Songstad, D. D., D. Epp, K. L. Giles, L. Friesen, I. Roewer, J. Park, and D. Novakovski (1989), Effect of Ethylene on Sanguinarine Production from Papaver somniferum Cell Cultures, Plant Cell Reports 8, 463-466 https://doi.org/10.1007/BF00269049
  18. Fei Z., C. Bo, L. Xu-Biao, Z. Xiao-Lan, and Y. Shou-Zhou (2004), Effect of mobile phase on loading mass for preparative separation of sanguinarine and chelerythrine on a reverse phase column, J. Liq. Chromatogr. Technol. 27, 1491-1505 https://doi.org/10.1081/JLC-120034087
  19. Marketa V., B. Petr, K. Vlastimil (2004), Capillary electrophoretic studies of acid-base properties of sanguinarine and chelerythrine alkaloids, J. Chromatogr. A 1040, 141-145 https://doi.org/10.1016/j.chroma.2004.03.064
  20. Das, A., R. Nandi, and M. Maltl (1992), Photophysical property of sanguinarine in the excited singlet state, Photochem. Photo bioI. 56, 311-317 https://doi.org/10.1111/j.1751-1097.1992.tb02165.x
  21. Byun S. Y., Y. W. Ryu, C. Kim, and H. Pedersen (1992), Elicitation of sanguinarine production in two-phase cultures of Eschscholtzia califormica, J. Fermen. and Bioeng. 73,380-385 https://doi.org/10.1016/0922-338X(92)90283-Z
  22. Williams, R.D., C. Bedard, C. Chavarie, and J. Archambault (1996), Production of sanguinarine by elicited plant cell II. Further nutrient aspects, J. Biotechnol. 46, 107-120 https://doi.org/10.1016/0168-1656(95)00185-9
  23. Naltalka, J., J. Naltalkova, P. Gemeiner, and P. Blanarik (1998), Elicitation of plumbagin by chitin and its release into the medium in Drosophyllum lusitanicum Link. suspension cultures, Biotechnol. Left. 20, 841-845 https://doi.org/10.1023/A:1005307408135
  24. Scott C. R., S. N. Thomas, H. Daniel, I. Alejandro, M. Fred, and B. Thomas (2001), Directed proteomics identifies a plant-specific protein rapidly phosphorylated in response to bacterial and fungal elicitors, The Plant Cell. 13, 1467-1475 https://doi.org/10.2307/3871308