The Effect of Concentration of Glucose and Salts on both the Growth and the production of Lipid and DHA of Thraustochytrium aureum ATCC 34304

당농도 및 염농도가 해양미생물 Thraustochytrium aureum ATCC 34304의 성장 및 지질과 DHA 생성에 미치는 영향 규명

  • Kim Won-Ho (Department of Biological and Chemical Engineering, College of Engineering, Inha University) ;
  • Jeong Young-Su (Department of Biological and Chemical Engineering, College of Engineering, Inha University) ;
  • Park Chun-Ik (Boryung Central Research Institute, Boryung Pharmaceutical Co. Ltd.) ;
  • Hur Byung-Ki (Department of Biological and Chemical Engineering, College of Engineering, Inha University)
  • 김원호 (인하대학교 공과대학 생명화학공학부) ;
  • 정영수 (인하대학교 공과대학 생명화학공학부) ;
  • 박천익 ((주)보령제약 중앙연구소) ;
  • 허병기 (인하대학교 공과대학 생명화학공학부)
  • Published : 2005.08.01

Abstract

The polyunsaturated fatty acids (PUFAs) are mostly synthesized by the marine original microorganisms. In this study, the effect of concentrations of glucose, NaCl, and $MgSO_4{\cdot}7H_2O$ on both the growth and the production of lipid and Docosahexaenoic acid (DHA) was investigated using Thraustochytrium aureum ATCC 34304. $Y_{Lipid/X}\;and\;Y_{DHA/Lipid}$ increased according to the increase of initial glucose concentration until 15 g/L of glucose. The maximum values of $Y_{Lipid/X}\;and\;Y_{DHA/Lipid}$ were 0.18 g/g and 0.41 g/g respectively at 15 g/L of glucose. The biomass yield, $Y_{x/s}$, however, was constant as 0.378 g/g regardless of initial glucose concentrations in the range of 5 g/L to 25 g/L. The specific growth rate of T. aureum increased also with initial glucose concentration from 5 g/L and 15 g/L. The maximum value was $0.79\;day^{-1}$ at 15 g/L of glucose, and the growth rate decreased to $0.57\;day^{-1}$ and remained constant according to initial sugar concentration in the range of higher than 15 g/L of glucose. The concentration of NaCl was changed from 0 g/L to 48 g/L, in order to study the characteristics of the growth and the production of lipid and DHA according to NaCl concentration. The growth and the production of lipid as well as DHA stopped all at 0 g/L of NaCl and the maximum values of all the three variables occurred at 24 g/L. The effect of $MgSO_4{\cdot}7H_2O$ concentration was also investigated not to find the growth and the production of lipid and DHA at 0 g/L. However, the growth and the Production with $MgSO_4{\cdot}7H_2O$ concentration increased to reach the maximum values at 18 g/L of $MgSO_4{\cdot}7H_2O$.

본 연구에서는 당의 초기농도는 물론 NaCl과 $MgSO_4{\cdot}7H_2O$의 농도가 T. aureum ATCC 34304 균주의 성장특성, 지질의 생성특성 및 DHA의 생성특성에 미치는 영향을 규명하였다. 당농도 15 g/L까지는 당농도가 증가하면 균체증가량에 대한 지질증가량의 비율인 $Y_{Lipid/X}$간과 지질증가량에 대한 DHA 증가량의 비율인 $Y_{DHA/Lipid}$ 값이 모두 증가하였다. $Y_{lipid/X}$$Y_{DHA/Lipid}$의 최대값은 0.18 g/g 과 0.41 g/g을로 모두 당의 초기농도 15 g/L에서 나타났다. 반면 균체수율인 $Y_{x/s}$ 값은 당의 초기농도 변화에 관계없이 0.378 g/g으로 일정하였다. 당의 농도변화에 대한 균체의 비성장속도 역시 당농도 15 g/L까지는 최대 $0.79\;day^{-1}$까지 증가하였으나, 20 g/L에서는 $0.57\;day^{-1}$로 감소하였으며, 그 이상의 당농도에서는 증감현상을 나타내지 아니하였다. 해수배지 조성을 기본으로 하고 NaCl 농도를 0.1 g/L에서 48 g/L까지 변화시켰을 때 NaCl의 농도가 0 g/L인 경우 균체의 성장, 지질의 생성 및 DHA의 생성이 모두 정지되었으며, NaCl 24 g/L에서 균체성장, 지질생성 및 DHA의 생성이 최대값을 나타내었다. 또한 기본해수배지 조성에 $MgSO_4{\cdot}7H_2O$의 농도를 0 g/L에서 24 g/L까지 변화시켰을 때, $MgSO_4{\cdot}7H_2O$ 0 g/L에서는 균체성장, 지질생성 및 DHA 생성이 정지되었으며, $MgSO_4{\cdot}7H_2O$ 18 g/L에서 균체성장, 지질생성 및 DHA의 생성이 최대값을 나타내었다.

Keywords

References

  1. Mehta J., Lopez L. M., and T. Wargovish (1987), Eicosapentaenoic acid: its relevance in atherosclerosis and coronary artery disease, Am J Cardiol. 59, 155-159 https://doi.org/10.1016/S0002-9149(87)80090-5
  2. Urakaze M., Hamazaki T, Soda V., Miyamoto M., Iloki E, Yano F., and A. Kumagai (1986), Infusion of emulsified trieicosapentaenoyl-glycerol into rabbits - the effects on platelet aggregation, polymorphonuclear leukocyte adhesion, and fatty acid composition in plasma and platelet phospholipids, Thrombo. Res. 44, 673-682 https://doi.org/10.1016/0049-3848(86)90168-4
  3. Phillipson B. E., Rothrock D. W., Connor W. E., Harris W. S., and D. R Illingworth (1985), Reduction of plasma lipids, lipoproteins, and apoproteins by dietary fish oils in patients with hypertriglyceridemia, New Engl. J. Med 312, 210-216
  4. Mortensen, K. Z. Sclunidt E. B., Nielsen A. H., and J. Dyerberg (1983), The effect of N-6 and N-3 polyunsarurated fatty acids on hemostasis, blood lipids and blood pressure, Thromb. Haemost. 50, 543-546
  5. Lands, W. E. M. (1986), In: Kifer R. R., and Martin R. E., editors, Health effects of polyunsarurated fatty acids in seafoods. FL: Academic Press, Orlando, 319
  6. Kremer J. M., Biguouette J., and A. U. Michalek (1985), Effects of manipulating dietary fatty acids on clinical manifestations of rheumatoid arthritis, Lancet 1, 184 - 187
  7. Ziboh V. A., Cohen K. A., Ellis C. N., Miller C., Hamilton T. A., Kragballe K., Hydrick C. R., and J. J. Voorhees (1986), Effects of dietary supplementation of fish oil on neutrophil and epidermal fatty acids. Modulation of clinical course of psoriatic subjects, Arch Dermatol. 122, 1277-1282 https://doi.org/10.1001/archderm.122.11.1277
  8. Robinson D. R., Prickett J. D., Makoul G. T., Steinberg A. D., and R. B. Colvin (1986), Dietary fish oil reduces progression of established renal disease in (NZB$\times$NZW) F1 mice and delays renal disease in BXDB and MRL/I strains, Arthritis Rheum 29, 539 - 546 https://doi.org/10.1002/art.1780290412
  9. Frank Gunstone (2002), Lipid Science and Lipid Commerce, Issue in Honor of Dr. Douglas Lloyd, Scottish Crop Research, Scotland, ARKIVOC, 143-148
  10. Sijtsma L. and M. E. de Swaaf (2004), Biotechnological production and applications of the $\omega$-3 polyunsaturated fatty acid docosahexaenoic acid, Appl. Microbiol. Biotechnol. 64, 146-153 https://doi.org/10.1007/s00253-003-1525-y
  11. Lee, E. H., Oh, K. S., Ahn, C. B., Chung, Y. H., Kim, J. S., and S. K. Jee (1986), Seasonal Variation in lipid and fatty acid composition of Sardine, Sardinops melanosticta, Korean J. Food Sci. Technol. 18, 245-248
  12. Yongmanitchai W. and O. P. Ward (1989), Omega3 fatty acids: alternative sources of production, Process Biochem. 117-25
  13. Bajpai P., and P. K. Bajpai (1993), Eicosapentaenoic acid (EPA) production from microorganisms: a review, J. Biotechnol. 30, 161-183 https://doi.org/10.1016/0168-1656(93)90111-Y
  14. Henderson R. J., Leftley J. W., and J. R. Sargent (1988), Lipid composition and biosynthesis in the marine dinoflagellate Crypthecodinium cohnii, Phytochemistry 27, 1679-1683 https://doi.org/10.1016/0031-9422(88)80425-4
  15. Totani, N., Someya K., and K. Oba (1992), Industrial production of arachidottic acid by Mortierella,. In: Industrial Applications of Single Cell oils, Kyle D. J., and Ratledge C., editors. Champaign, IL, AOCS Press, pp52-60
  16. Rezanka, T., Doucha, J., Mares, P., and M. Podojil (1987), Effect of cultivation temperature and light intensity on fatty acid production in the red alga Porphyridium cruentum, J. Basic Microbiol. 27, 167-171 https://doi.org/10.1002/jobm.3620270312
  17. L. Sicko-Goad, Simmons M. S., Lazinsky D., and J. Hall (1988), Effect of light cycle on diatom fatty acid composition and quantitative morphology, J. Phycol. 24, 1-7 https://doi.org/10.1111/j.1529-8817.1988.tb04448.x
  18. Orcutt D. M., and G. W. Patterson (1974), Effect of light intensity upon lipid composition of Nitzschia closterium (Cylindrotheca fusifor- mis). Lipids 9, 1000 - 1003 https://doi.org/10.1007/BF02533825
  19. A. Ben-Amotz, Tornabene T. G., and W. H. Thomas (1985), Chemical profile of selected species of microalgae with emphasis on lipids, J. Phycol. 21, 72-81 https://doi.org/10.1111/j.0022-3646.1985.00072.x
  20. Lepage G. and C. C. Roy (1984), Improved Recovery of Fatty Acid through Direct Transesterification without Prior Extraction or Purification, J. Lipid Res. 25, 1391-1396
  21. Bajpai P. K., Bajpai P., and O. P. Ward (1991), Optimization of Production of DocosahexaenoicAcid (DHA) by Thraustochytrium aureum ATCC 34304, J. Amer. Oil Chem. Soc. 68, 509-514 https://doi.org/10.1007/BF02663823
  22. Jiang Y., Fan K. W., Wong R. T., and F. Chen (2004), Fatty acid composition and squalene content of the marine microalga Schizochytrium mangrovei, J. Agric. Food Chem. 52, 1196-1200 https://doi.org/10.1021/jf035004c