References
- J. M. Hilker and D. A. Hullender, 'Adaptive control system techniques applied to inertial stabilization systems,' Proc. SPIE 1304, pp. 190-206,1990 https://doi.org/10.1117/12.21565
- C. D. Walrath, 'Adaptive bearing friction compensation based on recent knowledge of dynamic friction,' Automatica, vol. 20, pp. 717-727, Nov. 1984 https://doi.org/10.1016/0005-1098(84)90081-5
- B. Friedland and Y. J. Park, 'On adaptive friction compensation,' IEEE Transaction On Automatic Control, vol. 37, no. 10, pp. 1609-16125, Oct. 1992 https://doi.org/10.1109/9.256395
- W. Li and X. Cheng, 'Adaptive high precision control of positioning tables theory and experiments,' IEEE Transaction On Control Systems Technology, vol. 2, no. 3, pp. 265-270, Sept. 1994 https://doi.org/10.1109/87.317983
- J. O. Jang, B. G. Jeon and G. J. Jeon, 'Neuro controller design for the line of sight stabilization system containing nonlinear friction,' Journal of Control, Automation and Systems Engineering, vol. 3, no. 2, pp. 139-148, April, 1997
- W. Y. Koh, S. W. Hwang, Y. S. Ha and G. G. Jin, 'Stabilization and tracking algorithms of a shipboard satellite antenna system,' Journal of Control, Automation and Systems Engineering, vol. 8, no. 1, pp. 67-73, Jan. 2002 https://doi.org/10.5302/J.ICROS.2002.8.1.067
- Y. Y. Cao and P. M. Frank, 'Analysis and synthesis of nonlinear time-delay systems via fuzzy control approach,' IEEE Trans Fuzzy Syst., vol. 8, no. 2, pp. 200-211, April. 2000 https://doi.org/10.1109/91.842153
-
K. R. Lee, J. H. Kim, E. T. Jeung and H. B. Park, 'Output feedback robust
$H_{\infty}$ control of uncertain fuzzy dynamic systems with time-varying delay,' IEEE Trans. Fuzzy Syst., vol. 8, no. 6, pp. 657-664, Decem. 2000 https://doi.org/10.1109/91.890325 - E. T. Jeung, D. C. Oh and H. B. Park, 'Delay-dependent control for time-delayed fuzzy systems using description representation,' Int. J. of Control. Automation, and Systems', vol. 2, no. 2, pp. 182-188, June. 2004
-
K. R. Lee, 'Delay-dependent H
$H_{\infty}$ filter design for delayed fuzzy dynamic systems,' Journal of control, automation, and systems engineering of korea, vol. 10, no. 7, pp. 618-624, July. 2004 https://doi.org/10.5302/J.ICROS.2004.10.7.618 - X. Li and C. E. de Souza, 'Delay-dependent robust stability and stabilization of uncertain linear delay systems : a linear matrix inequality approach,' IEEE Trans. Automat. Contr., vol. 42, no. 8, pp. 1144-1148, August. 1997. https://doi.org/10.1109/9.618244
- Y. S. Moon, P. Park, W. H. Kwon and Y. S. Lee, 'Delay-dependent robust stabilization of uncertain state-delayed systems,' Int. J. Control., vol. 74, no. 14, pp. 1447-1455, 2001 https://doi.org/10.1080/00207170110067116
- T. Takagi and M. Sugeno, 'Fuzzy identification of systems and its applications to modeling and control,' IEEE Trans. Syst. Man Cyber., vol. 15, no. 1, pp. 116-132, 1985
- J. Hale. Theory of Functional Differential Equations. New York: Springer-Verlag, 1997
- S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM, 1994
- P. Gahinet, A. Nemirovski, A. J. Laub, and Ghilali, LMI Control Toolbox For Use with MTLAB, The Math Works Inc., 1995
Cited by
- A Robust State Feedback Control of Gimbal System with Parametric Uncertainty vol.52, pp.8, 2015, https://doi.org/10.5573/ieie.2015.52.8.140