DOI QR코드

DOI QR Code

Delay Dependent Fuzzy H Control of Radar Gimbal Stabilization System with Parameter Uncertainty and Time Delay

파라미터 불확실성 및 시간지연을 갖는 레이더 김벌 안정화 시스템의 지연종속 퍼지 H 제에

  • 김태식 (항공우주연구원 비행선그룹) ;
  • 이해창 (항공우주연구원 비행선그룹) ;
  • 이갑래 (평택대학교 정보통신학과)
  • Published : 2005.11.01

Abstract

This paper presents controller design method for nonlinear radar gimbal system with parameter uncertainty and time delay. In order to consider nonlinearity of gimbal bearing frictional torque, we firstly represent fuzzy model for the nonlinear gimbal system, which is achieved by fuzzy combination of linear models through nonlinear fuzzy membership functions. And secondly we propose a delay dependent fuzzy $H_\infty$ controller design method for the delayed fuzzy model with parameter uncertainty and design radar gimbal controller. The designed controller stabilize gimbal system and guarantee $H_\infty$ performance. A computer simulation is given to illustrate stabilized control performances of the designed controller.

Keywords

References

  1. J. M. Hilker and D. A. Hullender, 'Adaptive control system techniques applied to inertial stabilization systems,' Proc. SPIE 1304, pp. 190-206,1990 https://doi.org/10.1117/12.21565
  2. C. D. Walrath, 'Adaptive bearing friction compensation based on recent knowledge of dynamic friction,' Automatica, vol. 20, pp. 717-727, Nov. 1984 https://doi.org/10.1016/0005-1098(84)90081-5
  3. B. Friedland and Y. J. Park, 'On adaptive friction compensation,' IEEE Transaction On Automatic Control, vol. 37, no. 10, pp. 1609-16125, Oct. 1992 https://doi.org/10.1109/9.256395
  4. W. Li and X. Cheng, 'Adaptive high precision control of positioning tables theory and experiments,' IEEE Transaction On Control Systems Technology, vol. 2, no. 3, pp. 265-270, Sept. 1994 https://doi.org/10.1109/87.317983
  5. J. O. Jang, B. G. Jeon and G. J. Jeon, 'Neuro controller design for the line of sight stabilization system containing nonlinear friction,' Journal of Control, Automation and Systems Engineering, vol. 3, no. 2, pp. 139-148, April, 1997
  6. W. Y. Koh, S. W. Hwang, Y. S. Ha and G. G. Jin, 'Stabilization and tracking algorithms of a shipboard satellite antenna system,' Journal of Control, Automation and Systems Engineering, vol. 8, no. 1, pp. 67-73, Jan. 2002 https://doi.org/10.5302/J.ICROS.2002.8.1.067
  7. Y. Y. Cao and P. M. Frank, 'Analysis and synthesis of nonlinear time-delay systems via fuzzy control approach,' IEEE Trans Fuzzy Syst., vol. 8, no. 2, pp. 200-211, April. 2000 https://doi.org/10.1109/91.842153
  8. K. R. Lee, J. H. Kim, E. T. Jeung and H. B. Park, 'Output feedback robust $H_{\infty}$ control of uncertain fuzzy dynamic systems with time-varying delay,' IEEE Trans. Fuzzy Syst., vol. 8, no. 6, pp. 657-664, Decem. 2000 https://doi.org/10.1109/91.890325
  9. E. T. Jeung, D. C. Oh and H. B. Park, 'Delay-dependent control for time-delayed fuzzy systems using description representation,' Int. J. of Control. Automation, and Systems', vol. 2, no. 2, pp. 182-188, June. 2004
  10. K. R. Lee, 'Delay-dependent H$H_{\infty}$ filter design for delayed fuzzy dynamic systems,' Journal of control, automation, and systems engineering of korea, vol. 10, no. 7, pp. 618-624, July. 2004 https://doi.org/10.5302/J.ICROS.2004.10.7.618
  11. X. Li and C. E. de Souza, 'Delay-dependent robust stability and stabilization of uncertain linear delay systems : a linear matrix inequality approach,' IEEE Trans. Automat. Contr., vol. 42, no. 8, pp. 1144-1148, August. 1997. https://doi.org/10.1109/9.618244
  12. Y. S. Moon, P. Park, W. H. Kwon and Y. S. Lee, 'Delay-dependent robust stabilization of uncertain state-delayed systems,' Int. J. Control., vol. 74, no. 14, pp. 1447-1455, 2001 https://doi.org/10.1080/00207170110067116
  13. T. Takagi and M. Sugeno, 'Fuzzy identification of systems and its applications to modeling and control,' IEEE Trans. Syst. Man Cyber., vol. 15, no. 1, pp. 116-132, 1985
  14. J. Hale. Theory of Functional Differential Equations. New York: Springer-Verlag, 1997
  15. S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM, 1994
  16. P. Gahinet, A. Nemirovski, A. J. Laub, and Ghilali, LMI Control Toolbox For Use with MTLAB, The Math Works Inc., 1995

Cited by

  1. A Robust State Feedback Control of Gimbal System with Parametric Uncertainty vol.52, pp.8, 2015, https://doi.org/10.5573/ieie.2015.52.8.140