중공사 막을 이용한 급성호흡곤란증후군 환자용 폐 보조 장치의 설계와 평가

Design and Evaluation of a Lung Assist Device for Patients with Acute Respiratory Syndrome using Hollow Fiber Membranes

  • 이삼철 (한려대학교 신소재공학과) ;
  • 권오성 (전북대학교 신소재공학부) ;
  • 김호철 (경상대학교 의대 내과학교실) ;
  • 황영실 (경상대학교 의대 내과학교실) ;
  • 이현철 (한려대학교 신소재공학과)
  • Lee, Sam-Cheol (Department. of Advanced Materials Engineering, Hanlyo University) ;
  • Kwon, O-Sung (School of Advanced Materials Engineering, Chonbuk National University) ;
  • Kim, Ho-Cheol (Department of Internal Medicine, School of Medicine, Gyeongsang National University) ;
  • Hwang, Young-Sil (Department of Internal Medicine, School of Medicine, Gyeongsang National University) ;
  • Lee, Hyun-Cheol (Department. of Advanced Materials Engineering, Hanlyo University)
  • 발행 : 2005.09.01

초록

생체 폐를 대신해서 임시적으로 제공하는 폐 보조 장치(LAD)의 사용은 기계 환기술의 단순화와 체외순환 막형 인공폐의 기능을 결합하여 급성호흡부전 환자에 적합하다. 본 연구에서의 주 관심은 폐 보조 장치에서의 막 진동 효율에 있었으며 정량적인 실험 측정은 혈액 용혈에 대한 막 진동 의존을 확인하기 위하여 실행하였다. 또, 혈액 용혈은 막 진동이 이루어질 때 한계 용혈의 가진 주파수 대에서 결정하였다. 최대 기체 전달율을 보이는 675의 중공사 막으로 이루어져 있는 유형 5의 가진 주파수에서 최대 진폭의 발생 및 중공사에 진동의 전달에 의해 최대 산소 전달율이 일어났다. 이 주파수가 혈류량에 가동 가능했던 제 2 형태의 공진 주파수가 되어 높은 각 혈류량 비에서 $25{\pm}5$ 헤르쯔까지 가진이 되었으며, 혈액 용혈은 $25{\pm}5$ 헤르쯔의 가진 주파수에서 상대적으로 낮았다. 따라서 우리는 이 폐 보조 장치의 한계 용혈 주파수가 $25{\pm}5$ 헤르쯔인 것으로 결정했다.

The use of the lung assist device (LAD) would be well suited for acute respiratory failure (ARF) patients, combining the simplicity of mechanical ventilation with the ability of extracoporeal membrane oxygenators (ECMO) to provide temporary relief for the natural lungs. This study's specific attention was focused on the effect of membrane vibration in the LAD. Quantitative experimental measurements were performed to evaluate the performance of the device, and to identify membrane vibration dependence on blood hemolysis. We tried to decide upon excited frequency band of limit hemolysis when blood hemolysis came to through a membrane vibration action. The excited frequency of the module type 5, consisted of 675 hollow fiber membranes, showed the maximum gas transfer rate. We concluded that the maximum oxygen transfer rate seemed to be caused by the occurrence of maximum amplitude and the transfer of vibration to hollow fiber membranes. It was excited up to $25{\pm}5$ Hz at each blood flow rate of module type 5. We found that this frequency became the 2nd mode resonance riequency of the flexible in blood flow. Blood hemolysis was low at the excited frequency of $25{\pm}5$ Hz. Therefore, we decided that limit hemolysis frequency of this LAD was $25{\pm}5$ Hz.

키워드

참고문헌

  1. E. J. Miller, A. B. Cohen, S. Nagao, D. Greiffith, R. J. Maunder, T. R. Martin, J. P. Weiner-Kronish, M. Sticherling, and E. Christopher, Matthay, 'Elevated levels of NAP-l/interleukin-8 are present in the airspaces of patients with adult respiratory distress syndrome and are associated with increased mortality', Am Rev respiratory Dis., 16, 427 (1992)
  2. O. J. Kwon, P. J. Jose, R. A. Robbins, T. J. Schall, T. J. Williams, and P. J. Barnes, 'Glucocorticoid inhibition of RANTES expression in human lung epithelial cells', Am J Respir Cell Mol Biol., 12, 488 (1995)
  3. L. Puybasset, P. Cluzel, N. Chao, A. S. Slutsky, P. Coriat, and J. J. Rouby, 'A computed tomograpy scan assessment of regional lung volume in acute injury. The CT Scan ARDS Study Group', Am J Respir Crit Care Med., 158, 1644 (1998) https://doi.org/10.1164/ajrccm.158.3.9711092
  4. L. Gattinoni, L. D'Andrea, P. Pelosi, G. Vitale, A. Pesenti, and R. Fumagalli, 'Regional effects and mechanism of positive end-expiratory pressure in early adult respiratory distress syndrome', JAMA, 269, 2122 (1993)
  5. L. Gattinoni, P. Pelosi, S. Crotti, and F. Valenza, 'Effects of positive end-expiratory pressure on regional distribution of tidal volume and recruitment in adult respiratory distress syndrome', Am J Respir Crit Care Med., 151, 1807 (1995)
  6. M. B. Amato, C. S. Barbas, D. M. Medeiros, R. B. Magaldi, G. P. Schettino, G. Lorenzi-Filho, et aI, 'Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome', N Engl J Med., 338, 347 (1998)
  7. S. E. Lapinsky, M. Aubin, S. Mehta, P. Boiteau, and A. S. Slutsky, 'Safety and efficacy of a sustained inflation for alveolar recruitment in adults with respiratory failure', Intensive Care Med., 25, 1297 (1999)
  8. G. Chatte, J. M. Sab, J. M. Dubois, M. Sirodot, P. Gaussorgues, and D. Robert, 'Prone position in mechanically ventilated patients with severe acute respiratory failure', Am J Respir Crit Care Med., 155, 473 (1997)
  9. B. P. Fuhrman, P. R. Paczan, and M. DeFrancisis, 'Perfluorocarbon-associated gas exchange', Crit Care Med., 19(5), 712 (1991)
  10. C. Putensen, S. Zech, H. Wrigg, J. Zinserling, F. Stuber, T. von Spiegel, et al., 'Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury', Am J Respir Crit Care Med, 164, 43 (2001)
  11. P. Fort, C. Farmer, J. Westerman, J. Johannigman, W. Beninati, S. Dolan, et al., 'High frequency oscillatory ventilationfor adult respiratory distress syndrome-a pilot study', Crit Care Med., 25, 937 (1997)
  12. 서지영, 강경우, 박상준, 김호철, 임시영, 정만표, 한정호, 김호중, 권오정, 이종헌, '급성 폐손상에서 폐를 Recruit시키는 방법간의 비교연구', 결핵 및 호홉기질환; 48(4), 500 (2000)
  13. 김호철, 조대현, 강경우, 박동준, 이종덕, 황영실, '급성호흡곤란증후군 환자에서 폐포모집술의 반응에 따른 초기 예후의 차이', 결핵 및 호홉기질환, 56(3), 280 (2004)
  14. J. J. Marini, 'New options for the ventilatory management of acute lung injury. New Horizons', The Science and Practice of Acute Medicine, 1, 489 (1993)
  15. K. G. Hickling, S. J. Henderson, and R. Jackson, 'Low mortality associated with permissive hypercapnea in severe respiratory distress syndrome', Intensive Care Med., 16, 372 (1990)
  16. V. Nodelman, H. Baskaran, and J. S. Ultman, 'Enhancement of $O_2$ and $CO_2$ transfer through microporous hollow fiber by pressure cycling', Annals of Biomedical Engineering, 26, 1044 (1998)
  17. S. N. Vaslef, K. E. Cook, R. J. Leonard, L. F. Mockros, and R. W. Anderson, 'Design and evaluation of a new, low pressure loss, implantable artificial lung', ASAIO J, 40, M522 (1994)
  18. W. J. Federspiel, L. W. Lund, J. A. Bultman, S. Wanant, J. Matoney, J. F. Golob, B. J. Frankowski, M. Watach, P. Litwak, and B. G. Hattler, 'Ex-vivo testing of the intravenous membrane oxygenator (lMO)' ASAIO J, 45, 127 (1999)
  19. H. Baskaran, 'Blind-ended hollow fiber prototypes of the Penn State intravascular Lung', Ph.D. Dissertation.The Pennsylvania State University (1997)
  20. J. D. Mortensen, 'An intravenacaval blood gas exchange (IVCBGE) device: a preliminary report', Trans Am Soc Artif Intern Organs, 33, 570 (1987)
  21. J. D. Mortensen, 'Intravascular oxygenator: a new alternative method for augmenting blood gas transfer in patients with acute respiratory failure', Artif Organs, 16, 75 (1992)
  22. J. D. Mortensen and G. Berry, 'Conceptual and design features of a practical, clinically effective intravenous mechanical blood oxygen/carbon dioxide exchange device(Ivox)', The Intern Artif Organs, 12(6), 384 (1989)
  23. J. D. Mortensen, US Patent, 4, 583, 969, April (1986)
  24. S. N. Vaslef, J. F. Mockros, and R. W. Anderson, 'Development of an intravacular lung assist device', Trans Am Soc Artif Intern Organs, 35, 660 (1989)
  25. M. T. Snider, et al., US patent application, serial No. WO 93/13,828 (1993)
  26. S. A. Taheri, US Patent, 4, 631, 053, December (1986)
  27. AAMI Standard, 'Cardionascular/Neurology Standards for Blood/Gas Exchanger Devices (Oxygenators)', August 14 (1998)
  28. ISO/DIS 7199 International Standard, 'Cardiovascular Implantants and Artificial Organs-BloodGas Exchangers' (1996)