Pervaporation of Fluoroethano1 and Methacrylic Acid Aqueous Solution Through New Acid-resistant Poly(vinyl alcohol) Membranes

새로운 내산성 PVA가교막을 이용한 불화에탄을 수용액과 메타크릴산 수용액의 투과증발분리

  • Lee Soo-Bok (Interface Materials & Eng. Lab. Division of Advanced Chemical Technology, Korea Research Institute of Chemical Technology) ;
  • Ahn Sang-Man (Interface Materials & Eng. Lab. Division of Advanced Chemical Technology, Korea Research Institute of Chemical Technology, Department of Chemical Engineering, Chung-Nam National University) ;
  • Chang Bong-Jun (Interface Materials & Eng. Lab. Division of Advanced Chemical Technology, Korea Research Institute of Chemical Technology) ;
  • Kim Jeong-Hoon (Interface Materials & Eng. Lab. Division of Advanced Chemical Technology, Korea Research Institute of Chemical Technology) ;
  • Lee Yong-Taek (Department of Chemical Engineering, Chung-Nam National University)
  • 이수복 (한국화학연구원 계면재료공정연구실) ;
  • 안상만 (한국화학연구원 계면재료공정연구실, 충남대학교 화학공학과) ;
  • 장봉준 (한국화학연구원 계면재료공정연구실) ;
  • 김정훈 (한국화학연구원 계면재료공정연구실) ;
  • 이용택 (충남대학교 화학공학과)
  • Published : 2005.09.01

Abstract

Acid-resistant poly(vinyl alcohol) (PVA) membranes connected with ethylene and ether groups were prepared via a thermal crosslinking reaction by varying the ratio of PVA to ethylene glycol diglycidyl ether (EGDE). The crosslinked membranes were characterized using FT-IR and swelling tests, respectively. Pervaporation behaviors with the PVA membranes were investigated for aqueous TFEA (2,2,2-trifluoroethanol) as a function of EGDE content and operating temperature. The pervaporation properties far MA (methacrylic acid)/water mixture were also carried out with the optimized PVA membrane. The PVA membranes prepared with EGDE showed more excellent acid-resistance than those crosslinked with gluaraldehyde. The membranes showed high permeation fluxes of 0.1 and $0.3\;km^2h$ and high separation factors of 100 and 900 in the $96\;wt\%$ TFEA and MA aqueous fred mixtures at high temperature above $80^{\circ}C$, respectively. These confirmed theses membranes could be used in esterification membrane reactor process for the production of 2,2,2-trifluoroethylmetacrylate (TFEMA).

본 연구는 에스텔화 막반응공정에 의한 2,2,2-trifluoroethyl metacrylate (TFEMA)의 생산을 위한 선행연구로, 가교된 poly(vinyl alcohol)막을 이용하여 TFEA (2,2,2-trifluoroethanol)/water과 MA (methacrylic acid)/water 혼합용액을 대상으로 투과증발특성을 연구하였다. 산 저항성을 가진 가교된 PVA막은 PVA와 EGDE를 같이 녹인 수용액을 Teflon plate 위에 캐스팅한 후 $140^{\circ}C$에서 열 가교시킴으로써 제조하였다. 제조된 막의 특성을 알아보기 위해 FT-IR과 팽윤도 측정을 실시하였다. TFEA/water 혼합용액에 대한 투과증발실험은 가교제인 EGDE농도와 운전온도를 변화시켜가면서 실시하였으며, MA/water 혼합용액에 대한 투과증발실험은 최적화된 PVA막을 가지고 실시하였다. 투과증발실험결과로부터 제조된 막은 TFEA와 MA의 에스테르화 반응온도인 $80^{\circ}C$ 이상에서 $96\%$의 TFEA 및 MA 수용액에 대해 각각 100, 900 이상의 매우 높은 물에 대한 선택도와 0.1, $0.3\;kg/m^2h$의 투과도를 얻을 수 있었다.

Keywords

References

  1. J. N. Armor, Applications of catalytic inorganic membrane reactors to refinery products, J. Membrane Sci., 147, 217 (1998)
  2. W. J. Onset, R. G. Minet, and T. T. Tsotsis, Design of Membrane Reactors for Dry Reforming of Methane for the Production of Hydrogen, Ind. Eng. Chem. Res., 40, 242 (2001) https://doi.org/10.1021/ie000632u
  3. K. K. Sirkar, P. V. Shanbhag, and A. S. Kovvali, Membrane in a reactor: A Functional Perspective, Ind. Eng. Chem. Res., 38, 3715 (1999) https://doi.org/10.1021/ie980337y
  4. S. Irusta, M. P. Pina, M. Menendez, and J. Santamaria, Development and application of perovskitebased catalytic membrane reactors, Catalysis Lett., 54, 69 (1998)
  5. R. M. Waldburger and F. Widmer, Membrane Reactors in Chemical Production Processes and the Application to the Pervaporation-Assisted Esterification, Chem. Eng. Technol., 19, 117 (1996)
  6. Q. Liu, Z. Zhang, and H. Chen, Study on the coupling of esterification with pervaporation, J. Memb. Sci., 182, 173 (2001) https://doi.org/10.1016/S0376-7388(00)00569-X
  7. Y. Zhu and H. Chen, Pervaporation separation and pervaporation-esterification coupling using crosslinked PVA composite catalytic membranes on porous ceramic plate, J. Memb. Sci., 138, 123 (1998)
  8. M. O. David, Q. T. Nguyen, and 1. Neel, Pervaporation membranes endowed with catalytic properties, based on polymer blends, J Memb. Sci., 73, 129 (1992)
  9. B. Chemseddine and R. Audinos, Use of ion-exchange membranes in a reactor for esterification of oleic acid and methanol at room temperature, J. Memb. Sci., 115, 77 (1996)
  10. L. Bagnell, K. Cavell, A. M. Hodges, A. W-H. Mau, and A. 1. Seen, The use of catalytically active pervaporation membranes in esterification reactions to simultaneously increase product yield, membrane permselectivity and flux, J. Memb. Sci., 85, 291 (1993)
  11. H. Kita, K. Tanaka, K. Okamoto, and M. Yamamoto, The esterification of oleic acid with ethanol accompaniedby membrane separation, Chem. Lett. 456, 2053 (1987)
  12. S. M. Ahn, J. W. Ha, J. H. Kim, Y. T. Lee, and S. B. Lee, Pervaporation of fluoroethanol/water and methacrylic acid mixtures through PVA composite membranes, J. Membrane Sci., 247, 51 (2005)