토목섬유 보강 성토사면의 안정해석 II. - 소요 보강재 인장력 평가 -

A Stability Analysis of Geosynthetics Reinforced Soil Slopes II - Evaluation of Required Reinforcement Tensile Force -

  • 발행 : 2005.10.01

초록

토목섬유로 보강된 성토사면의 안정해석시, 소요 보강재의 인장력은 토압이론에 근거하여 하나 또는 두개의 직선으로 가정된 활동면에 대하여 평형을 유지하기 위하여 필요한 보강재 인장력의 합으로부터 얻을 수 있으며, 각 층별 보강재의 인장력은 삼각형분포 또는 직사각형 분포로 가정한다. 그러나, 실제 토목섬유로 보강된 사면에 대한 현장계측결과에 및 모형실험 결과에 의하면, 보강 성토사면에서 보강재 최대인장력은 사면의 최하단에서 발생하는 것이아니라 사면내의 어느 높이에서 발생한다. 보강토체의 가상파괴면은 일반적으로 각 층의 보강재에서 최대인장력이 발생하는 위치를 연결한 선이며, 이 때 보강재의 인장력은 가상파괴면상의 응력상태와 밀접한 관련이 있다. 따라서 본 연구에서는 사면안정해석으로부터 얻은 가상활동면상의 법선응력의 분포로부터 각 층별 보강재의 인장력을 평가 할 수 있는 방법을 제안하고, 토목섬유 보강 성토사면에 대한 현장계측 사례에 대한 해석을 통하여 그 적용성을 검토 하였다. 그 결과, 본 연구에서 제안한 방법이 기존의 보강사면 설계법 보다 더 현장계측 데이터에 근접하는 각 층별 보강재 인장력을 제공해주는 것으로 나타났다.

Generally, when the stability of the geosynthetic reinforced soil slopes is analyzed, the required tensile forces of each reinforcement layers are calculated from total reinforcement forces which are necessary to retain the equilibrium state of slip mass in which the slip surfaces are assumed to be a linear or bilinear. It is assumed that the reinforcement forces are increased or constant with depth. However, according to the instrumented field data and laboratory model test results, the maximum tensile strain of reinforcement in a reinforced soil slope is developed in a certain elevation, not a bottom of the slope. In the concept of reinforced soil, postulated failure surfaces are the traces of the position in which the reinforcement tensile forces are maximum in the layer, and the reinforcement tensile forces are related to the stress state on the postulated failure surface. Therefore, in this study, based on the distribution of normal stress on the slip surface, a new method for the evaluation of required tensile forces is suggested and a number of the instrumented field data are analyzed by newly suggested method. As a result, it is shown that the newly suggested method produces relatively accurate reinforcement tension forces.

키워드

참고문헌

  1. 한국지반공학회 (1998a), 지반공학시리즈 9 토목섬유, 도서출판 구미서관, 서울, pp. 289-311
  2. 한국지반공학회 (1998b), 토목섬유 설계 및 시공요령, 도서출판 구미서관, 서울, pp. 306-343
  3. 김경모, 김홍택, 이은수, 김영윤, 안광국 (2005), '토목섬유 보강성토사면의 안정해석 I. 보강효과를 고려한 사면안정해석', 한국지반공학회 논문집, 제21권, 제8호, pp. 95-105
  4. Ali, F. H. (1993), 'Field Behaviour of a Geogrid-Reinforced Slope', Geotextiles and Geomembranes, Vol.12, pp.53-72 https://doi.org/10.1016/0266-1144(93)90036-N
  5. Allen, T. M. and Bathurst, R. J. (2003), Revised Prediction of Soil Reinforcement Loads in Mechanically Stabilized Earth (MSE) Walls, WSDOT Research Report W A-RD-522.2a
  6. Arriaga, F. (2003), Response of Geosynthetic-Reinforced Structures under Working Stress and Failure Conditions, PhD. Thesis, Department of Civil, Environmental and Architectural Engineering
  7. Binnie and Partners (1982), WAGGLE A Computer Program for the Stability Analysis of Reinforced Soil Slopes and Embankments, Program Manual
  8. BSI (1995), BS8006 : 1995 Code of Practice for Strengthened/reinforced Soils and Other Fills, British Standard Institution, London, UK. p.82
  9. Elias, V., Christopher, B. R, and Berg, R. R. (2001), Mechanically Stabilized Earth Walls and reinforced Soil Slopes Design and Construction Guidelines, Publication No. FHWA-NHI-00-043, National Highway Institute, Federal Highway Administration, U.S. Department of Transportation
  10. Fannin, R. J. and Hermann, S. (1990), 'Performance Data for a Sloped Reinforced Soil Wall', Canadian Geotechnical Journal, Vol.27, pp.676-686 https://doi.org/10.1139/t90-080
  11. Fannin, R. J. (1994), 'Field Observations on the Load-Strain Time Behaviour of Geogrid Reinforcement', Canadian Geotechnical Journal, Vol.31, pp.564-569 https://doi.org/10.1139/t94-065
  12. Itoh, M., Shirasawa, M., Itoh, A., Kumagai, K., and Fukuoka, M. (1994), 'Well Documented Case Study of a Reinforced Soil Wall', Proceedings of the Fifth International Conference on Geotextiles, Geomembranes and Related Products, Singapore, 5-9, September, 1994, pp.255-258
  13. Jewell, R A (1991), 'Application of Revised Design Charts for Steep Reinforced Slopes', Geotextiles and Geomembranes, Vol.10, No.3, pp.203-233 https://doi.org/10.1016/0266-1144(91)90056-3
  14. Jewell, R. A. (1990), 'Revised Design Charts for Steep Reinforced Slopes', Proceedings of Symposium on Reinforced Embankments; Theory and Practice in the British Isles, Cambridge, September, Thomas Telford. pp.1-27
  15. Jewell, R. A. and Wrotb, C. P. (1987), 'Direct Shear Tests on Reinforced Sand', Geotechnique, Vol.37, No.1, pp.53-68 https://doi.org/10.1680/geot.1987.37.1.53
  16. Jewell, R. A., Paine, N., and Woods, R. I. (1984), 'Design Methods for Steep Reinforced Embankments', Polymer Grid Reinforcement, Thomas Telford, London, pp.70-81
  17. Leshchinsky, D. (1997), 'ReSlope - A Software to Facilitate Design of Geosynthetic- Reinforced Steep Slopes', Geotechnical Fabrics Report, January-February, 1997, pp.40-46
  18. Leshchinsky, D. and Boedeker, R. H. (1989), 'Geosynthetic Reinforced Soil Structures', Journal of Geotechnical Engineering, ASCE, Vol.115, No.10, pp.1459-1478 https://doi.org/10.1061/(ASCE)0733-9410(1989)115:10(1459)
  19. Schmertmann, G. R., Chouery-Curtis, V. E., Johnson, R. D., and Bonaparte, R. (1987), 'Design Charts for Geogrid-Reinforced Soil Slopes', Proceeding of Geosynthetics '87, New Orleans, U.S.A., pp.108-120
  20. Shen, Z. J. (1999), Theoretical Soil Mechanics, Walters Press, Beijing, p.199
  21. Zornberg, J. G., Sitar, N., and Mitchell, J. K. (1998), 'Performance of Geosynthetic Reinforced Slopes at Failure', Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.124, No.8, pp.670-683 https://doi.org/10.1061/(ASCE)1090-0241(1998)124:8(670)