일반화된 Hoek-Brown 모델의 정식화 및 Rounded Hoek-Brown 모델의 개발

Formulation of Generalized Hoek-Brown Model and Development of Rounded Hoek-Brown Model

  • 김범상 (포스코건설 토목환경사업본부 토목기술팀) ;
  • 권오순 (한국해양연구원 연안항만공학연구본부) ;
  • 장인성 (한국해양연구원 연안항만공학연구본부)
  • Kim Bum-Sang (Civil Engrg. Team, POSCO E&C) ;
  • Kwon O-Soon (Harborand Coostal Zone Development Research Div., KORDI) ;
  • Jang In-Sung (Harborand Coostal Zone Development Research Div., KORDI)
  • 발행 : 2005.10.01

초록

암반의 거동을 예측하기 위해 1980년 발표된 Hoek-Brown 모델은 지속적인 개선과 더불어 수많은 문제들을 해결하기 위해 널리 사용되고 있다. 그러나 Hoek-Brown 모델의 유한요소법 등 수치해석에 대한 적용성에 관한 연구는 미미한 실정이다. 본 논문에서는 Hoek-Brown 모델을 일반적 소성론 절차에 따라 구성모델로 정식화하여 그 특징을 살펴보았고, 수치적 문제점을 유발하게 되는 항복면의 모서리부를 곡면으로 처리한 Rounded Hoek-Brown 모델을 제시하였다. 제안모델은 탄소성 구성모델로서의 요구조건들을 만족하며, 압축측에서 원래의 Hoek-Brown 모델과 동일한 항복면을 갖는다. 제안 모델을 일반적인 비선형 유한요소해석에 적용하기 위하여 제안 모델의 구성방정식을 수립하였다.

Hoek-Brown model, which was developed in order to predict the behavior of rock mass, has widely been utilized and revised by many researchers to solve various problems encountered in tunnelling and slope stability analysis. However, there is no schematic investigation on the application of the Hoek-Brown model to numerical analysis including finite element simulations. In this paper the Hoek-Brown model was formulated as a constitutive model according to the procedure of generalized plasticity theory, and a Rounded Hoek-Brown model, which could overcome the numerical difficulties by modifying the edge part of the yield surface as a curve shape, was newly proposed. The new model could satisfy the requirements as an elasto-plastic constitutive soil model and follow the yield surface of the original Hoek-Brown model in the compression mode. The constitutive equation for the proposed model herein was established and presented to be applicable to the generalized nonlinear finite element analysis.

키워드

참고문헌

  1. Bardet, J. P. (1990), 'Lode Dependences for Isotropic Pressure-sensitive Elastoplastic Materials', Journal of Applied Mechanics, 57, pp.498-506 https://doi.org/10.1115/1.2897051
  2. Bieniawski, Z. T. (1976), 'Rock Mass Classification in Rock Engineering', Exploration for Rock Engineering, Proceedings of Rock Characterization Symposium (Edited by Bieniawski, Z. T.), Balkema, Cape Town, pp.97-106
  3. Carranza-Torres, C. and Fairhurst, C. (1999), 'The Elasto-Plastic Response of Underground Excavations in Rock Masses That Satisfy the Hoek-Brown Failure Criterion', International Journal of Rock Mechanics and Minning Science, 36(6), pp.777-809 https://doi.org/10.1016/S0148-9062(99)00047-9
  4. Carranza-Torres, C. and Fairhurst, C. (2000), 'Application of the Convergence-Confinement Method of Tunnel Design to Rock Masses that Satisfy the Hoek-Brown Failure Criterion', Tunneling and Underground Space Technology, 15(2), pp.187-213 https://doi.org/10.1016/S0886-7798(00)00046-8
  5. Hoek, E. and Brown, E.T. (1980), Underground Excavation in Rock, Institution of Mining and Metallurgy
  6. Hoek, . E. and Brown, E.T. (c), 'The Hoek-Brown Failure Criterion-a 1988 Update', Proceedings of the 15th Canadian Rock Mechanics Symposium, (ed. Curran, J.C.), Toronto, Canada, pp. 31-38
  7. Hoek, E. (1990), 'Estimating Mohr-Coulomb Friction and Cohesion Values from the Hoek-Brown Failure Criterion', International Journal of Rock Mechanics and Minning Science and Geomechanics, Abstracts, 12(3), pp.227-229
  8. Hoek, E., Carranza-Torres, C. and Corkum, B. (2002), 'Hoek-Brown Failure Criterion 2002 Edition', NARMS-TAC 2002: Mining and Tunnelling Innovation and Opportunity, Vol.1, pp.267-273
  9. Hoek, E., Kaiser P.K. and Bawden W.F. (1995), Support of Underground Excavations in Hard Rock, Rotterdam, Balkema, pp.214-215
  10. Hoek, E., Wood D. and Shah S. (1992), 'A Modified Hoek-Brown Criterion for Jointed Rock Masses', Proc. Rock Characterization, Symp. Int. Soc. Rock Mech.: Eurock '92, (ed. Hudson, J.A.), London, Brit. Geotech. Soc., pp.209-214
  11. Ortiz, M. and Popov, E. P. (1985): 'Accuracy and Stability of Integration Algorithms for Elastoplastic Constitutive Relations', International Journal for Numerical Methods in Engineering, 21, pp.1561-1576 https://doi.org/10.1002/nme.1620210902
  12. Willam, K.J. and Warnke, E.P. (1975), 'Constitutive Model for the Triaxial Behavior of Concrete', IABSE Seminar on Concrete Structures Subjected To Triaxial Stresses, Report 19, pp.1-30