Effects of In Vitro Culture Systems on the Development of In Vitro Fertilized or DNA-Microinjected Embryos

체외 배양 체계가 체외수정 및 유전자 미세주입 수정란의 발달에 미치는 영향

  • Park Y. S. (Kyoungbuk Livestock Research Institute) ;
  • Min K. S. (Animal Biotechnology, The Graduate School of Bio. & Information Technology, Hankyong National University)
  • 박용수 (경상북도 축산기술연소) ;
  • 민관식 (한경대학교 생명정보통신대학원)
  • Published : 2005.09.01

Abstract

This experiment was conducted to investigate effects of the two different in vitro production systems, serumcontaining system (IVM, IVF and IVC; TCM199, TALP and CR1aa) and serum-free system (IVM, IVF and IVC; IVMD101, IVMD100 and IVMD101), on the development of in vitro fertilized or DNA-microiniected embryos. We also examined the effect of DNA dosage and its expression pattern in embryos. The DNA used for microinjection was a green fluorescence protein gene. The development rates to $\geq$ 2cell, 8cell and blastocyst stage were significantly higher in vitro fertilized embryos than those in DNA-microinjected embryos. The development rate to the 8-cell stage was significantly higher in serum-free system than in serum-containing system (p<0.05; $3.3\%\;vs.\;15.5\%\;and\;21.4\%$, respectively). The development rates to the blastocyst stage of in vitro fertilzed or DNA-microinjected embryos between two different culture system ($2.7\%\;vs.\;2.3\%\;and\;23.0\%\;vs.\;23.6\%$, respectively) were not different. The development rates of embryos injected 2 ng/uL DNA was higher. than those of embryos injected 4 or 8 ng/uL DNA. The GFP expression rate of 1-cell embryos was significantly higher than that of 2-cell and 4-cell embryos, whereas the rates were not different between 4-cell and blastocyst-stage embryos.

본 연구에서는 배양 체계(혈청 첨가 TCM199, TALP, CRlaa 및 혈청 미첨가; IVMD101, IVF100, IVMD101)가 체외수정 또는 미세주입된 수정란의 체외 발달에 미치는 효과를 검토하였다. 또한 미세주입에 사용하는 GFP유전자의 양 및 미세주입 수정란에서 형광발현 양상을 검토하였다. 체외수정된 수정란의 $\geq$ 2세포기, 8세포기 및 배반포 도달율이 미세주입 수정란에 비하여 유의하게 높았다. 혈청 미첨가 배지에서의 8세포기 발달율이 수정란의 종류에 관계없이 유의하게 높았으나(p<0.05; $ 3.3\%\;vs.\;15.5\%$$21.4\%\;vs.\;39.4\%$, respectively), 배반포 도달율은 유사한 경향이었다($2.7\%\;vs.\;2.3\%$$23.0\%\;vs.\;23.6\%$, respectively). 한편, 2ng/uL 유전자를 미세주입한 수정란의 $\geq$ 2세포기, 8세포기 및 배반포 도달율이 4 및 8ng/uL의 것에 비하여 높은 경향이었다. 미세주입 수정란의 형광발현율은 1세포기가2및 8세포기에 비하여 유의하게 높았으나(p<0.05), 4세포기 및 배반포 단계와는 차이가 없었다.

Keywords

References

  1. Behboodi E, Groen W, Destrempes MM, Williams JL, Ohlrichs C, Gavin WG, Broek DM, Ziomek CA, Faber DC, Meade HM, Echelard Y (2001): Transgenic production from in vivo-derived embryos: Effect on calf birth weight and sex ratio. Mol Reprod Dev 60:27-37 https://doi.org/10.1002/mrd.1058
  2. Brinster RL, Chen HY, Trumbauer ME, Yagle MK, Palmiter RD (1985): Factors affecting the efficiency of introducing foreign DNA into mice by microinjecting eggs. Proc Natil Acd Sci 82:4438-4442 https://doi.org/10.1073/pnas.82.13.4438
  3. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994): Green fluorescent protein as a marker for gene expression. Science 263:802-805 https://doi.org/10.1126/science.8303295
  4. Chan AWS, Kukolj G, Skalka AM, Bremel RD (1997): Expression of green fluorescence protein in mammalian embryos: a novel reporter gene for the study of transgenesis and embryo development. Theriogenology 47:222 https://doi.org/10.1016/S0093-691X(97)82349-7
  5. Chan AWS, Kukolj G, Skalka AM, Bremel RD (1999): Timing of DNA integration, transgenic mosaicisim, and pronuclear microinjection. Mol Reprod Dev 52: 406-413 https://doi.org/10.1002/(SICI)1098-2795(199904)52:4<406::AID-MRD9>3.0.CO;2-P
  6. Cousens C, Carver AS, Wilmut I, Colman A, Garner I, O'Neill GT (1994): Use of PCR-based methods for selection of integrated transgenes in preimplantation embryos. Mol Reprod Dev 39:384-391 https://doi.org/10.1002/mrd.1080390406
  7. Devgan V, Seshagiri PB (2003): Successful development of viable blastocysts from enhanced green fluorescent protein transgene-microinjecte mouse embryos: Comparison of culture media. Mol Reprod Dev 65:269-277 https://doi.org/10.1002/mrd.10306
  8. Ebert KM, Selgrath JP, DiTullio P, Denman J, Smith TE, Memon MA, Schindler JE, Monastersky GM Vitale JA, Gordon K (1991): Transgenic production of a variant of human tissue-type plasminogen activator in goat milk : generation of transgenic goats and analysis of expression. Bio/Technology 9:835-838 https://doi.org/10.1038/nbt0991-835
  9. Hammer RE, Pursel VG, Rexroad CE, Wall RJ, Bolt DJ, Ebert KM Palmiter RD, Brinster RL (1985): Production of transgenic rabbits, sheep and pig by microinjection. Nature 315:680-683 https://doi.org/10.1038/315680a0
  10. Han YM, Park JS, Ryoo ZY, Kim YH, Lee KS, Yang CS, Lee KK (1997): Improved developmental rate of DNA-injected bovine embryos co-cultured with mouse embryonic fibroblasts. Theriogenology 47:223 https://doi.org/10.1016/S0093-691X(97)82350-3
  11. Hill KG, Curry J, DeMayo FJ, Diller KJ, Slapak JR, Bondioli KR (1992): Production of transgenic cattle by pronuclear injection. Theriogenology 37:222 https://doi.org/10.1016/0093-691X(92)90291-X
  12. Hochi H (2003): In vitro production of bovine embryos and the application for embryo transfer. Theriogenology 59:675-685 https://doi.org/10.1016/S0093-691X(02)01247-5
  13. Im YJ, Kim JH, Song HB, Jung YG (2004): Transfer, cryopreservation and production of bovine embryos cultured in serum-free system. Korean J Emb Trans 19:133-145
  14. Krimpenfort P, Rademakers A, Eyestone W, van der Schans A, van den Broek S, Kooiman P, Kootwijk E, Platenburg G, Pieper F, Strijker R, de Boer H (1991): Generation of transgenic dairy cattle using in vitro embryo production. Bio/Technology 9:844-847 https://doi.org/10.1038/nbt0991-844
  15. Krisher RL, Gibbons JR, Canseco RS, Johnson JL (1994): Influence of time of gene microinjection on development and DNA detection frequence in bovine embryos. Transgenic Research 3:226(abstract) https://doi.org/10.1007/BF02336775
  16. Lin TP (1966): Microinjection of mouse egg. Science 151:333-337 https://doi.org/10.1126/science.151.3708.333
  17. Menck MC, Mercier Y, Campion E, Lobo RB, Heymen Y, Renard JP, Thompson EM (1998): Prediction of transgene integration by noninvasive bioluminescent screening of microinjected bovine embryos. Transgenic Research 7:331-341 https://doi.org/10.1023/A:1008841222138
  18. Min KS, Hiyama T, Seong HH, Hattori N, Tanaka S, Shiota K (2004): Biological activities of tethered chorionic gonadotropin (eCG) and its deglycosylated mutants. J Reprod Dev 50: 297-304 https://doi.org/10.1262/jrd.50.297
  19. Murakami M Fahrudin M Varisanga MD, Suzuki T (1999): Fluorescence expression by bovine embryos after pronuclear microinjection with the EGFP gene. J Vet Med Sci 61:843-847 https://doi.org/10.1292/jvms.61.843
  20. Nottle MB, Haskard KA, Verma PJ, Du ZT, Grupen CG, Mcllfatrick SM, Ashman RJ, Harrison SJ, Barlow SJ, Barlow H, Wigley PL, Lyons IG, Cowan PJ, Crawford RJ, Tolstoshev PL, Pearse MJ, Rognis AJ, d'-Apice AJF (2001): Effect of DNA concentration on transgenesis rates in mice and pigs. Transgenic Research 10-523-531 https://doi.org/10.1023/A:1013007329936
  21. Palmiter RD, Wilkie TM, First NL (1984): Transmission distortion and mosaicsim in and unusual transgenic mouse pedigree. Cell 36:869-877 https://doi.org/10.1016/0092-8674(84)90036-9
  22. Peura TT, Tolvanen M, Hyttinen JM, Janne J (1995): Effects of membrane piercing and the type of pronuclear injection fluid on development of in vitro-produced bovine embryos. Theriogenology 43:1987-1096 https://doi.org/10.1016/0093-691X(95)00072-G
  23. Pollock DP, Kutzko JP, Birck-Wilson E, Williams JL, Echelard Y, Meade HM (1999): Transgenic milk as a method of production of recombinant antibodies. J Immunol Methods 231:147-157 https://doi.org/10.1016/S0022-1759(99)00151-9
  24. Prasher DC (1995): Using GFP to see the light. Trends Genet 11:320-323 https://doi.org/10.1016/S0168-9525(00)89090-3
  25. Rexroad CE, Hammer RE, Bolt DJ, Mayo KE, Frohman LA, Palmiter RD, Brinster RL (1989): Production of transgenic sheep with growth-regulating genes. Mol Reprod Dev 1:164-169 https://doi.org/10.1002/mrd.1080010304
  26. Rieth A, Pothier F, Gagne M Sirard MA (1999): Use of bovine satellite sequences to increase transgene integration by homologous recombination in bovine embryos. Mol Reprod Dev 53:1-7 https://doi.org/10.1002/(SICI)1098-2795(199905)53:1<1::AID-MRD1>3.0.CO;2-7
  27. Takakda T, Lida K, Awaji T, Itoh K, Takahashi R, Shibui A, Yoshida K, Sugano S, Tsujimoto G (1997): Selective production of transgenic mice using green fluorescent protein as a marker. Nat Biotechnol 15: 458-461 https://doi.org/10.1038/nbt0597-458
  28. Wall RJ (1996): Transgenic livestock: progress and prospects for the future. Theriogenology 45:57-68 https://doi.org/10.1016/0093-691X(95)00355-C
  29. Wall RJ (1997): A new lease on life for transgenic livestock. Nat Biotechnol 15:416-417 https://doi.org/10.1038/nbt0597-416
  30. Wall RJ, Seidel G Jr (1992): Transgenic farm animals-A critical analysis. Theriogenology 38:337-357 https://doi.org/10.1016/0093-691X(92)90239-N
  31. Wang B, Lazaris A, Lindenbaum M, Stewart S, Co D, Perez C, Drayer J, Karatzas CN (2001): Expression of a reporter gene after microinjection of mammalian artificial chromosomes into pronuclei of bovine zygotes. Mol Reprod Dev 60:433-438 https://doi.org/10.1002/mrd.1107
  32. Williams BL, Johnson AE, Velander WH, Page RL, Drohan WN, Young JM, Person RE, Wilkins TD, Gwazdauskas FC (1992): In vitro development of zygotes from prepubertal gilt after microinjection of DNA. J Anim Sci 70:2207-2211 https://doi.org/10.2527/1992.7072207x
  33. 김은국, 강만종, 문승주 (2001) : DNA 미세현미 주입 한우 수정란의 체외 발달. 한국수정란이식학회지 16:73-87