PURITY OF POLYNOMIAL MODULES AND INVERSE POLYNOMIAL MODULES

SANGWON PARK AND EUNHA CHO

ABSTRACT. In this paper we show that we can extend the purity of left *R*-modules to the case of polynomial modules, bipolynomial modules, and also inverse polynomial modules.

1. Introduction

An exact sequence of left R-modules $0 \to A' \xrightarrow{\lambda} A \to A'' \to 0$ is pure exact if, for every right R-module B, we have exactness of

$$0 \longrightarrow B \otimes A^{'} \xrightarrow{1 \otimes \lambda} B \otimes A \longrightarrow B \otimes A^{''} \longrightarrow 0.$$

We say that $\lambda A'$ is a pure submodule of A in this case ([7]). For example, a split exact sequence $0 \to A' \to A \to A'' \to 0$ is a pure exact sequence. Let M be an R-module, then the character module M^+ of M is defined by $\operatorname{Hom}(M,\,\mathbb{Q}/\mathbb{Z})$ and we denote $M^+ = \operatorname{Hom}_{\mathbb{Z}}(M,\,\mathbb{Q}/\mathbb{Z})$. In this paper we show that if $M \subset N$ is pure as left R-modules, then $M[x] \subset N[x]$ is pure as left R[x]-modules. We also prove that if $M \subset N$ is pure as R-module, then $M[x,x^{-1}] \subset N[x,x^{-1}]$ is pure as left R[x]-module. We can extend this result to the inverse polynomial modules so that if $M \subset N$ is pure, then $M[x^{-1}] \subset N[x^{-1}]$ is also pure as left R[x]-modules. Inverse polynomial modules were studied in ([1], [2], [3], [4]) and recently in ([5], [6]).

DEFINITION 1.1. [4] Let R be a ring and M be a left R-module, then $M[x^{-1}]$ is a left R[x]-module defined by

$$x(m_0 + m_1x^{-1} + \dots + m_ix^{-i}) = m_1 + m_2x^{-1} + \dots + m_ix^{-i+1}$$

Received July 2, 2004.

²⁰⁰⁰ Mathematics Subject Classification: Primary 16E30; Secondary 13C11, 16D80.

Key words and phrases: module, pure, pure submodule, inverse polynomial module.

This paper was supported by Dong-A University Research Fund in 2003.

and such that

$$r(m_0 + m_1 x^{-1} + \dots + m_n x^{-n}) = rm_0 + rm_1 x^{-1} + \dots + rm_n x^{-n},$$

where $r \in R$. We call $M[x^{-1}]$ as an inverse polynomial module.

Similarly, we can define $M[[x^{-1}]]$, $M[x,x^{-1}]$, $M[[x,x^{-1}]]$, $M[x,x^{-1}]$ and $M[[x,x^{-1}]]$ as left R[x]-modules where, for example, $M[[x,x^{-1}]]$ is the set of Laurent series in x with coefficients in M, i.e. the set of all formal sums $\sum_{k\geq n_0} m_k x^k$ with n_0 any element of \mathbb{Z} (\mathbb{Z} is the set of all integers).

LEMMA 1.2. $M \subset N$ is pure as left R-modules if and only if for any right R-module P the following diagram

can be completed as an commutative diagram.

Proof. Since \mathbb{Q}/\mathbb{Z} is an injective cogenerator as \mathbb{Z} -module, $0 \to M \to N$ if and only if $f: N^+ \to M^+$ is surjective. Since $M \subset N$ is pure as left R-modules, for any right R-module P, $0 \to P \otimes M \to P \otimes N$. So $(P \otimes N)^+ \to (P \otimes M)^+ \to 0$. Then by the adjoint theorem, $\phi: \operatorname{Hom}_R(P, N^+) \to \operatorname{Hom}_R(P, M^+)$ is surjective. So for any $h \in \operatorname{Hom}_R(P, M^+)$ there exist $g \in \operatorname{Hom}_R(P, N^+)$ such that $\phi(g) = f$. Therefore, we can complete the following diagram

as a commutative diagram. Conversely, let $M \subset N$ and P be any right R-module and suppose we can complete the above diagram as a following

diagram. Then

$$\operatorname{Hom}(P, N^+) \to \operatorname{Hom}(P, M^+) \to 0.$$

So by the adjoint theorem, $(P \otimes N)^+ \to (P \otimes M)^+ \to 0$ so that $0 \to (P \otimes M) \to (P \otimes N)$. Thus, $M \subset N$ is pure. Hence $M \subset N$ is pure as R-modules if and only if the diagram can be completed to a commutative diagram for any right R-module P.

The following theorem is originally due to R. Warfield.

DEFINITION 1.3. Let M, N be left R-modules, then $f: N^+ \to M^+$ has a section means there exist $s: M^+ \to N^+$ such that $f \circ s = id_{M^+}$.

THEOREM 1.4. $M \subset N$ is pure as left R-modules if and only if $f: N^+ \to M^+$ has a section.

Proof. Suppose $M \subset N$ is pure and P be any right R-module and let $P = M^+$ with $id : M^+ \to M^+$, then by the above lemma we have the following diagram

as a commutative diagram. Thus $f \circ s = id_{M^+}$. Therefore, $f: N^+ \to M^+$ has a section. Conversely, let $M \subset N$ and P be any right R-module and suppose $N^+ \to M^+ \to 0$ has a section . Then

$$\operatorname{Hom}(P, N^+) \to \operatorname{Hom}(P, M^+) \to 0.$$

So $(P \otimes N)^+ \to (P \otimes M)^+ \to 0$ and then $0 \to P \otimes M \to P \otimes N$. Thus $M \subset N$ is pure.

2. Purity of polynomial modules

Some part of the results of the following theorem are well-known, for the completeness of the paper we will give the proof.

THEOREM 2.1. Let M, N be left R-modules. Then $\operatorname{Hom}_R(M[x], N) \cong \operatorname{Hom}_R(M, N)[[x^{-1}]].$

Proof. Let $\phi \in \operatorname{Hom}_R(M[x], N)$ and define $d_{Mx^n}: M \to Mx^n$ by $d_{Mx^n}(m) = mx^n$ and $\phi|_{Mx^n}: Mx^n \to N$. Let $f_n = \phi|_{Mx^n} \circ d_{Mx^n}$ for each $n = 0, 1, 2, 3, \cdots$. Define

$$\psi: \operatorname{Hom}_R(M[x], N) \to \operatorname{Hom}_R(M, N)[[x^{-1}]]$$

by $\psi(\phi) = f_0 + f_1 x^{-1} + f_2 x^{-2} + f_3 x^{-3} + \cdots$. Then easily ψ is a well-defined group homomorphism. And $\ker(\psi) = 0$, so that ψ is injective. Let

$$f_0 + f_1 x^{-1} + f_2 x^{-2} + f_3 x^{-3} + \dots \in \operatorname{Hom}_R(M, N)[[x^{-1}]].$$

Choose $\phi \in \text{Hom}_R(M[x], N)$ such that $\phi(m_0 + m_1 x + m_2 x^2 + \dots + m_i x^i) = f_0(m_0) + f_1(m_1) + f_2(m_2) + \dots + f_i(m_i)$. Then

$$\psi(\phi) = (\phi|_{Mx^0} \circ d_{Mx^0}) + (\phi|_{Mx^1} \circ d_{Mx^1})x^{-1} + (\phi|_{Mx^2} \circ d_{Mx^2})x^{-2}$$

$$+ (\phi|_{Mx^3} \circ d_{Mx^3})x^{-3} + \cdots$$

$$= f_0 + f_1x^{-1} + f_2x^{-2} + f_3x^{-3} + \cdots$$

Therefore, ψ is surjective.

We note that if N is a left R-module, then since R[x] is R-R[x] bimodule $\operatorname{Hom}_R(R[x], N)$ is a left R[x]-module, and $N[[x^{-1}]]$ is also a left R[x]-module. So we have the following Theorem 2.2.

THEOREM 2.2. Let R be a ring and N be a left R-module. Then

$$\operatorname{Hom}_R(R[x], N) \cong N[[x^{-1}]]$$

as R[x]-modules.

Proof. Define $\phi: \operatorname{Hom}_R(R[x], N) \to N[[x^{-1}]]$ by

$$\phi(f) = f(1) + f(x)x^{-1} + f(x^2)x^{-2} + \cdots$$

Then ϕ is an isomorphism of left R[x]-modules.

We now have one of our main theorems.

THEOREM 2.3. If $M \subset N$ is pure as left R-modules, then $M[x] \subset N[x]$ is pure as left R[x]-modules.

Proof. Since $M \subset N$ is pure as left R-modules, then by Theorem 1.3, $f: N^+ \to M^+$ has a section $g: M^+ \to N^+$ such that $f \circ g = id_{M^+}$. And by Theorem 2.1, $(M[x])^+ \cong M^+[[x^{-1}]]$. So let $f^*: N^+[[x^{-1}]] \to M^+[[x^{-1}]]$ be

$$f^*(\psi_0 + \psi_1 x^{-1} + \psi_2 x^{-2} + \cdots) = f(\psi_0) + f(\psi_1) x^{-1} + f(\psi_2) x^{-2} + \cdots$$

Define
$$g^*: M^+[[x^{-1}]] \to N^+[[x^{-1}]]$$
 by

$$g^*(\phi_0 + \phi_1 x^{-1} + \phi_2 x^{-2} + \cdots) = g(\phi_0) + g(\phi_1) x^{-1} + g(\phi_2) x^{-2} + \cdots$$

Then

$$(f^* \circ g^*)(\phi_0 + \phi_1 x^{-1} + \phi_2 x^{-2} + \cdots)$$

$$= f^*(g^*(\phi_0 + \phi_1 x^{-1} + \phi_2 x^{-2} + \cdots))$$

$$= f^*(g(\phi_0) + g(\phi_1) x^{-1} + g(\phi_2) x^{-2} + \cdots)$$

$$= f(g(\phi_0)) + f(g(\phi_1)) x^{-1} + f(g(\phi_2)) x^{-2} + \cdots$$

$$= (f \circ g)(\phi_0) + (f \circ g)(\phi_1) x^{-1} + (f \circ g)(\phi_2) x^{-2} + \cdots$$

$$= \phi_0 + \phi_1 x^{-1} + \phi_2 x^{-2} + \cdots$$

Therefore, f^* has a section g^* such that $f^* \circ g^* = id_{M^+[[x^{-1}]]}$.

3. Purity of bipolynomial modules and inverse polynomial modules

THEOREM 3.1. Let M, N be left R-modules. Then

$$\operatorname{Hom}_R(M[x^{-1}, x], N) \cong \operatorname{Hom}_R(M, N)[[x^{-1}, x]].$$

Proof. Let $\phi \in \operatorname{Hom}_R(M[x^{-1},x],N)$ and define $d_{Mx^n}: M \to Mx^n$ by $d_{Mx^n}(m) = mx^n$ and $\phi|_{Mx^n}: Mx^n \to N$, for $n \in \mathbb{Z}$ (\mathbb{Z} is the set of integers). Let $f_n = \phi|_{Mx^n} \circ d_{Mx^n}$ for each $n \in \mathbb{Z}$. Define

$$\psi: \operatorname{Hom}_{R}(M[x^{-1}, x], N) \to \operatorname{Hom}_{R}(M, N)[[x^{-1}, x]]$$

by

$$\psi(\phi) = \sum_{n \in \mathbb{Z}} f_n x^{-n}.$$

Then easily ψ is an isomorphism.

If N is a left R-module, then since $R[x^{-1}, x]$ is R-R[x] bimodule, $\operatorname{Hom}_R(R[x^{-1}, x], N)$ is a left R[x]-module, and also $N[[x^{-1}, x]]$ is a left R[x]-module. So we have the following theorem.

THEOREM 3.2. Let R be a ring and N be a left R-module. Then

$$\operatorname{Hom}_R(R[x^{-1}, x], N) \cong N[[x^{-1}, x]]$$

as R[x]-modules.

Proof. Define
$$\phi : \text{Hom}_R(R[x^{-1}, x], N) \to N[[x^{-1}, x]]$$
 by $\phi(f) = \dots + f(x^2)x^{-2} + f(x)x^{-1} + f(1) + f(x^{-1})x^1 + f(x^{-2})x^2 + \dots$. Then ϕ is an $R[x]$ -module isomorphism.

THEOREM 3.3. If $M \subset N$ is pure as left R-modules, then $M[x, x^{-1}] \subset N[x, x^{-1}]$ is pure as left R[x]-modules.

Proof. Since $M \subset N$ is pure as left R-modules, $f: N^+ \to M^+$ has a section $g: M^+ \to N^+$ such that $f \circ g = id_{M^+}$. And by Theorem 3.1,

$$(M[x, x^{-1}])^+ \cong M^+[[x, x^{-1}]].$$

So let
$$f^*: N^+[[x, x^{-1}]] \to M^+[[x, x^{-1}]]$$
 be
$$f^*(\dots + \psi_{-1}x^{-1} + \psi_0 + \psi_1x^1 + \psi_2x^2 + \dots)$$
$$= \dots + f(\psi_{-1})x^{-1} + f(\psi_0) + f(\psi_1)x^1 + f(\psi_2)x^2 + \dots$$

Define
$$g^*: M^+[[x, x^{-1}]] \to N^+[[x, x^{-1}]]$$
 by
$$g^*(\dots + \phi_{-1}x^{-1} + \phi_0 + \phi_1x^1 + \phi_2x^2 + \dots)$$
$$= \dots + q(\phi_{-1})x^{-1} + q(\phi_0) + q(\phi_1)x^1 + q(\phi_2)x^2 + \dots$$

Then $(f^* \circ g^*) = id_{M^+[[x,x^{-1}]]}$. Therefore, f^* has a section g^* .

THEOREM 3.4. Let M, N be left R-modules. Then

$$\operatorname{Hom}_R(M[x^{-1}], N) \cong \operatorname{Hom}_R(M, N)[[x]].$$

Proof. Let $\phi \in \operatorname{Hom}_R(M[x^{-1}], N)$ and define $d_{Mx^{-n}} : M \to Mx^{-n}$ by $d_{Mx^{-n}}(m) = mx^{-n}$ and $\phi|_{Mx^{-n}} : Mx^{-n} \to N$. Let $f_n = \phi|_{Mx^{-n}} \circ d_{Mx^{-n}}$ for each $n = 0, 1, 2, 3, \cdots$. Define $\psi : \operatorname{Hom}_R(M[x^{-1}], N) \to \operatorname{Hom}_R(M, N)[[x]]$ by

$$\psi(\phi) = f_0 + f_1 x + f_2 x^2 + f_3 x^3 + \cdots$$

Thus ψ is an isomorphism.

If N is a left R-module, then since R[x] is R-R[x] bimodule

$$\operatorname{Hom}_R(R[x^{-1}], N)$$

is a left R[x]-module, and N[[x]] is also a left R[x]-module. So we have the following theorem.

THEOREM 3.5. Let R be a ring and N be a left R-module. Then

$$\operatorname{Hom}_R(R[x^{-1}], N) \cong N[[x]]$$

as R[x]-modules.

Proof. Define $\phi: \operatorname{Hom}_R(R[x^{-1}], N) \to N[[x]]$ by

$$\phi(f) = f(1) + f(x^{-1})x + f(x^{-2})x^2 + \cdots$$

Then ϕ is an R[x]-module isomorphism.

THEOREM 3.6. If $M \subset N$ is pure as left R-modules, then $M[x^{-1}] \subset N[x^{-1}]$ is pure as left R[x]-modules.

Proof. Since $M \subset N$ is pure as left R-modules, $f: N^+ \to M^+$ has a section $g: M^+ \to N^+$ such that $f \circ g = id_{M^+}$. And by the Theorem 3.4, $(M[x^{-1}])^+ \cong M^+[[x]]$. So let $f^*: N^+[[x]] \to M^+[[x]]$ be

$$f^*(\psi_0 + \psi_1 x + \psi_2 x^2 + \cdots) = f(\psi_0) + f(\psi_1) x + f(\psi_2) x^2 + \cdots$$

Define $g^*: M^+[[x]] \to N^+[[x]]$ by

$$g^*(\phi_0 + \phi_1 x + \phi_2 x^2 + \cdots) = g(\phi_0) + g(\phi_1) x + g(\phi_2) x^2 + \cdots$$

Then
$$(f^* \circ g^*) = id_{M^+[[x]]}$$
. Therefore, f^* has a section g^* .

EXAMPLE 3.7. Let R be a commutative ring and I=(r) be a principal ideal generalized by r. If $M \subset N$ is pure as R-modules, then

$$0 \to R/(r) \otimes_R M \to R/(r) \otimes_R N.$$

But since $R \otimes_R M \cong M$, we have $R/(r) \otimes_R M \cong M/rM$. Therefore, $M \subset N$ is pure implies that if r divides a in N, then r divides a in M. By the above result we see that $M[x] \subset M[x, x^{-1}]$ is not pure because x divides p in $M[x, x^{-1}]$ but x does not divide p in M[x] as R[x]-modules.

Let S be a submonoid of \mathbb{N} (\mathbb{N} is the set of natural numbers) and consider S such that S contain all n in N larger than some n_0 in \mathbb{N} . Then the conductor of S is the largest element of \mathbb{Z} not in S. If the conductor of S is C, then S is said to be symmetric if and only if S satisfies: S is in S if and only if S is not in S. We can easily generalize the previous results so that we can get

- 1. $M \subset N$ is pure as left R-modules, then $M[x^s] \subset N[x^s]$ is pure as left $R[x^s]$ -modules.
- 2. $M \subset N$ is pure as left R-modules, then $M[x^{-s}, x^s] \subset N[x^{-s}, x^s]$ is pure as left $R[x^s]$ -modules.
- 3. $M \subset N$ is pure as left R-modules, then $M[x^{-s}] \subset N[x^{-s}]$ is pure as left $R[x^s]$ -modules.

References

- [1] A. S. McKerrow, On the Injective Dimension of Modules of Power Series, Quart J. Math. Oxford 25 (1974), no. 3, 359-368.
- [2] D. G. Northcott, Injective Envelopes and Inverse Polynomials, London Math. Soc. 2 (1974), 290–296.
- [3] S. Park, Inverse Ploynomials and Injective Covers, Comm. Algebra 21 (1993), 4599-4613.
- [4] ______, The Macaulay-Northcott Functor, Arch. Math. (Basel) **63** (1994), 225-
- [5] _____, Gorenstein Rings and Inverse Polynomials, Comm. Algebra 28 (2000), no. 2, 785-789.
- [6] ______, The General Structure of Inverse Polynomial Modules, Czechoslovak Math. J. 51 (2001), no. 126, 343-349.
- [7] J. Rotman, An Introduction to Homological Algebra, Academic Press Inc. New York, 1979.

SANGWON PARK AND EUNHA CHO, DEPARTMENT OF MATHEMATICS, DONG-A UNI-VERSITY, PUSAN 604-714, KOREA

E-mail: swpark@donga.ac.kr choeh@donga.ac.kr