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PURITY OF POLYNOMIAL MODULES
AND INVERSE POLYNOMIAL MODULES

SANGWON PARK AND EuNHA CHO

ABSTRACT. In this paper we show that we can extend the purity
of left R-modules to the case of polynomial modules, bipolynomial
modules, and also inverse polynomial modules.

1. Introduction

An exact sequence of left R-modules 0 — AXA54" S0is pure
exact if, for every right R-module B, we have exactness of

0— BoA ®ABgA—BeA —0.

We say that AA' is a pure submodule of A in this case ([7]). For example,
a split exact sequence 0 — A — A— A" = 0is a pure exact sequence.
Let M be an R-module, then the character module M of M is defined
by Hom(M, Q/Z) and we denote M+ = Homgz(M, Q/Z). In this paper
we show that if M C N is pure as left R-modules, then M([z] C N{z] is
pure as left R[z]-modules. We also prove that if M C N is pure as R-
module, then M[z,z~!] C N[z,z~!] is pure as left R[z]-module. We can
extend this result to the inverse polynomial modules so that if M C N
is pure, then M([z~!] C N[z~!] is also pure as left R[z]-modules. Inverse
polynomial modules were studied in ([1], [2], [3], [4]) and recently in ([5],

[6])-

DEFINITION 1.1. [4] Let R be a ring and M be a left R-module, then
M|z™1] is a left R[z]-module defined by

x(mo + miz 4+ m;x ") =m1 + Mozt + -+ + myz
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and such that
r(mo+miz™ 4+ 4 muz™) =rmo +rmyz L 4 -+ rmpz™,
where r € R. We call M[z~!] as an inverse polynomial module.

Similarly, we can define M[[z~!]], M|z, z71], M[[z,z7}]]}, M[z,z™}]]
and M[[z,z71] as left R[z]-modules where, for example, M[[x,z~!] is
the set of Laurent series in x with coefficients in M, i.e. the set of all
formal sums ;- myz® with ng any element of Z (Z is the set of all
integers). B

LEMMA 1.2. M C N is pure as left R-modules if and only if for any
right R-module P the following diagram

Pr

N — L

can be completed as an commutative diagram.

Proof. Since Q/Z is an injective cogenerator as Z-module, 0 — M —
N if and only if f : N* — MT is surjective. Since M C N is
pure as left R-modules, for any right R-module P, 0 - PQ M —
P®N. So (P® N)* - (P® M)* — 0. Then by the adjoint the-
orem, ¢ : Homg(P,N*) — Hompg(P,M™) is surjective. So for any
h € Hompg(P, M) there exist g € Hompg(P, Nt) such that ¢(g) = f.
Therefore, we can complete the following diagram

Pr

N — L M 0

as a commutative diagram. Conversely, let M C N and P be any right
R-module and suppose we can complete the above diagram as a following
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diagram. Then
Hom(P, N*) - Hom(P, M*) — 0.

So by the adjoint theorem, (P ® N)* — (P ® M)t — 0 so that 0 —
(PM) — (P®N). Thus, M C N is pure. Hence M C N is pure as R-
modules if and only if the diagram can be completed to a commutative
diagram for any right R-module P. O

The following theorem is originally due to R. Warfield.

DEFINITION 1.3. Let M, N be left R-modules, then f: N*T — M™*
has a section means there exist s : M™ — N7 such that f os=idys+.

THEOREM 1.4. M C N is pure as left R-modules if and only if f :
N* — MT has a section.

Proof. Suppose M C N is pure and P be any right R-module and let
P = Mt with id : M* — M™, then by the above lemma we have the
following diagram

Mg
s lid
»
Ng — My 0

as a commutative diagram. Thus f o s = idy+. Therefore, f : NT —
M has a section. Conversely, let M C N and P be any right R-module
and suppose Nt — M™* — 0 has a section . Then

Hom(P, N*) — Hom(P, M*) — 0.

So(P®N)* - (P®M)" -0 andthen0 —- P® M — P® N. Thus
M C N is pure. O

2. Purity of polynomial modules

Some part of the results of the following theorem are well-known, for
the completeness of the paper we will give the proof.

THEOREM 2.1. Let M, N be left R-modules. Then
Hompg(M|[z], N) = Hompg(M, N)[[z]].
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Proof. Let ¢ € Homg(M|[z],N) and define dpen : M — Mz™ by
dprzn(m) = mz™ and @|pzn : Mz" — N. Let fr = ¢|pan 0 dygn for
eachn =0,1,2,3,---. Define

1 : Homgp(M|z], N) — Hompg(M, Mz

by ¥(¢) = fo + fiz™t + for 2 + fzz~3 +---. Then easily 9 is a well-
defined group homomorphism. And ker(y) = 0, so that 1 is injective.
Let

fo+ fiz '+ fox + fz 73 + - € Hompg(M, N)[lz™]].

Choose ¢ € Homp(M [z], N) such that ¢(mo+miz+maez?+- - -+msz*) =
fo(mo) + fi(m1) + fa(me) + - -+ + fi(ms). Then

(@) = (Dlara0 © darz0) + (Blasat © dargr)z ™ + (Blaga2 0 dprz2)x™>
+ (¢|Mz3 o de3)£E_3 e
= fot+ iz + for P+ far P4

Therefore, v is surjective. a

We note that if N is a left R-module, then since R[z] is R-R[z]
bimodule Homg(R[z], N) is a left R[z]-module, and N{[z~']] is also a
left R[z]-module. So we have the following Theorem 2.2.

THEOREM 2.2. Let R be a ring and N be a left R-module. Then
Homg(R[z], N) & N[jz™"]]
as R[z]-modules.
Proof. Define ¢ : Homp(R|z], N) — N[[z~!]] by
$(f) = F() + fl@)z™ + fa®)z ™2+ -
Then ¢ is an isomorphism of left R[z]-modules. |
We now have one of our main theorems.

THEOREM 2.3. If M C N is pure as left R-modules, then M[z] C
N{z] is pure as left R[z]-modules.

Proof. Since M C N is pure as left R-modules, then by Theorem 1.3,
f: Nt — M* has a section g : M+ — N* such that f o g = idp+.
And by Theorem 2.1, (M[z])* = M*[[z']]. Solet f*: N*[[z7!]] —
M*{[z71]] be

Fr@o+ e a2+ o) = (o) + F(¥)z T + flwh2)z T2 4
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Define "« M*[[a~"]) = N*[[a~"] by
7 (¢o+ prz ™t + doz™2 4 -+ ) = g(¢o) + g(p1)z™t + 9(B2)z2 + - -
Then
(F*og*)(do + 127t + oz 2+ --+)
= f*(g" (o + hrz + oz 2+ )
= f*(g(¢0) + g(d1)z~ + g(d2)z ™2 +--+)
= f(9(d0)) + flg(¢1))z™" + flg(d2))z 2 + -
= (fog)(do) + (fog)(@)z™" + (fog)(ga)z ™+
=do+pz + oI+
Therefore, f* has a section g* such that f*og* =id M+ .

3. Purity of bipolynomial modules and inverse polynomial
modules
THEOREM 3.1. Let M, N be left R-modules. Then
Hompg(M[z™!, z], N) & Hompg(M, N)[[z ™, z]).

Proof. Let ¢ € Homg(M[z™1,z],N) and define dprgn : M — Mz"
by daren(m) = ma™ and ¢|pgn : Mz™ — N, for n € Z (Z is the set of
integers). Let f, = ¢|pan © dpyn for each n € Z. Define

¥ : Homp(M[z~%,z], N) — Homg(M, N)[z™!,z]]
by
P(@) = faz™™

neZ
Then easily 1 is an isomorphism. o

If N is a left R-module, then since R[z~!,z] is R-R[z] bimodule,
Homp(R[z™%,z], N) is a left R[z]-module, and also N{[z~",x]] is a left
R[z]-module. So we have the following theorem.

THEOREM 3.2. Let R be a ring and N be a left R-module. Then
Homp(Rlz™", ], N) = N[lz™", 2]

as R[z]-modules.
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Proof. Define ¢ : Homg(R[z ™}, 2], N) — N|[z~},z]] by
$(f) =+ f@)e ™ + f@)a™ + f(1) + @2 + fl@)a" + -
Then ¢ is an R[z]-module isomorphism. O

THEOREM 3.3. If M C N is pure as left R-modules, then M[z,z71] C
Nlz,z7Y] is pure as left R[z]-modules.

Proof. Since M C N is pure as left R-modules, f : Nt — M* has a
section g : M+ — N¥ such that f o g = idps+. And by Theorem 3.1,

(Mlz,z~')* 2 M*[[z,271]].
So let f*: N¥[[z,z7!]] = M*[[z,27]] be
e+ vz + o+ it + o’ +--0)
=+ f(-1)z™ + f(Wo) + f(Wr)a’ + f(o)n® + -
Define g* : M*[[x,z7!]] = N*[[z,27}]] by
g+ b1z  + do + brat + oz +---)
=+ g(¢-1)z"" + g(do) + g(d1)z" + g(d2)c® +--- .
Then (f* 0 g*) = idpr+(jz o-1)] Therefore, f* has a section g*. O
THEOREM 3.4. Let M, N be left R-modules. Then
Homg(M|[z™!], N) = Homg(M, N)][z]].

Proof. Let ¢ € Homg(M[z™!],N) and define dpsp-n : M — Mz™"
by dpsz-n(m) = mz™™ and @|prg—n : Mz™ — N. Let fn = @|prz—n ©
dpgp-n for each n = 0,1,2,3,---. Define ¢ : Homg(M[z"!],N) —
Hompg(M, N)[[z]] by

¥(9) = fo+ Hix+ foz® + faz® + -
Thus 1) is an isomorphism. O

If N is a left R-module, then since R[z] is R-R[z] bimodule

Hompg(R[z™!}, N)

is a left R[z]-module, and N{[z]] is also a left R[z]-module. So we have
the following theorem.

THEOREM 3.5. Let R be a ring and N be a left R-module. Then
Hompg(R[z™"], N) = N{[z]]

as R[z]-modules.
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Proof. Define ¢ : Homg(R[z™}], N) — N{[z]] by
o) =F)+ fa™e+ fl@™)a® + oo

Then ¢ is an R[z]-module isomorphism. O

THEOREM 3.6. If M C N is pure as left R-modules, then M [m'l] C
N[z™Y] is pure as left R[x]-modules.

Proof. Since M C N is pure as left R-modules, f : NT — M™ has a
section g : M+ — N7 such that fog = idys+. And by the Theorem 3.4,
(M[z=1))* = M*iz]). So let f*: N*[[a]] — M*[fa]] be

F*(Wo + 1z +1paz® + ) = f(o) + f(yr)z + f(o)a’ + - .
Define g* : M*[[z]] — N*|[[z]] by

g*(¢0 + ¢17 + oz’ + -+ ) = g(¢o) + 9(d1)z + g(d2)a® + - .

Then (f* o g*) = idp+fz). Therefore, f* has a section g*. O

ExaMPLE 3.7. Let R be a commutative ring and I = (r) be a prin-
cipal ideal generalized by r. If M C N is pure as R-modules, then

0—- R/(r)®r M — R/(r) ®r N.

But since RQr M = M, we have R/(r) @g M = M/rM. Therefore,
M C N is pure implies that if r divides ¢ in N, then r divides a in M.
By the above result we see that M(z] C M[z, 2] is not pure because z
divides p in M|z, z7}] but = does not divide p in M|[z] as R[z]-modules.

Let S be a submonoid of N (N is the set of natural numbers) and
consider S such that S contain all n in N larger than some ng in N.
Then the conductor of S is the largest element of Z not in S. If the
conductor of S is ¢, then S is said to be symmetric if and only if §
satisfies: n is in S if and only if ¢ — n is not in §. We can easily
generalize the previous results so that we can get

1. M C N is pure as left R-modules, then M[z°] C N[z°] is pure as
left R[z*]-modules.

2. M C N is pure as left R-modules, then M[z~%, 2°] C N[z~%,z°] is
pure as left R[z®*]-modules.

3. M C N is pure as left R-modules, then M[z™%] C N[z™*] is pure
as left R[z®]-modules.
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