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REMARKS ON SPECTRAL
PROPERTIES OF p-HYPONORMAL
AND LOG-HYPONORMAL OPERATORS

BrAGWATI P. DUGGAL AND IN HO JEON

ABSTRACT. In this paper it is proved that for p-hyponormal or
log-hyponormal operator A there exist an associated hyponormal
operator T', a quasi-affinity X and an injection operator Y such
that TX = XA and AY = YT. The operator A and T have the
same spectral picture. We apply these results to give brief proofs
of some well known spectral properties of p-hyponormal and log-
hyponormal operators, amongst them that the spectrum is a con-
tinuous function on these classes of operators.

1. Introduction

Let H be a complex separable infinite dimensional Hilbert space
and let B(H) denote the Banach algebra of bounded linear operators
acting on H. For an operator A € B(H), we write ker A and ranA
for the null space and the range of A. An operator A € B(H) is
called semi-Fredholm, denoted A € pgr, if ranA is closed and either
a(A) := dim(ker A) or B(A) := dim(ker A*) is finite; in this case the
index of A, denoted i(A), is defined by i(A) = a(A) — f(A). If a(A) and
B(A) are both finite, then A is called Fredholm. If A € pgr and i(A) =0,
then A is called Weyl, denoted A € p%p. Also, A is called Browder if A
is Fredholm and A — A (:= A — AIy) is invertible for sufficiently small
A # 0 € C. Recall([12]) that the ascent, denoted asc(A), and the de-
scent, denoted des(A), of A € B(H) are the extended integers given by
asc(A) = inf{n > 0 : ker A" = ker A"*!} and des(4) = inf{n > 0 :
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ran A" = ran A"*1}, respectively. The infimum over the empty set is
taken to be co. If the ascent and the descent of A are both finite, then
asc(A) = des(A)([12, Proposition 38.4]). Let K(H) denote the ideal
of all compact operators in B(H) and let C(H) = B(H)/K(H) be the
Calkin algebra with the Calkin canonical projection 7 : B(H) — C(H).
Throughout this paper we shall use the following standard notations
for various spectra:
o(A)y={A e C: A— Xis not invertible} for the spectrum of A
oe(A) ={A € C: A— Xis not left invertible}
for the left spectrum of A
or(A) ={A € C: A— ) is not right invertible}
for the right spectrum of A
0,(A) ={A e C: A— Xis not bounded below}
for the approximate point spectrum of A
o5(A) ={A € C: A— ) is not surjective}
for the approximate defect spectrum of A
o.(A)={A€C: A— Xis not Fredholm}
for the essential spectrum ofA
ow(A)={A € C: A— \is not Weyl} for the Weyl spectrum of A
op(A) ={r € C: A— \is not Browder}
for the Browder spectrum ofA
oee(A) = g¢(m(A)) for the left essential spectrum of A
0re(A) = o.(m(A)) for the right essential spectrum of A
Oere(A) = 0ee(A) N 0re(A)
0,(A) ={A € C:0 < a(A— N} for the point spectrum of A

In Hilbert context, it is well known that
o0(A) = 0,(A) and 0,.(A) = 05(A).
For convenient let us introduce the following additional notations:
psr(A) ={AeC:A- )€ psr}

psrp(A) ={re€C: A - A€ pr}
pip(A)={AeC:A— )€ pgr with i(A— ) >0}
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psr(A) ={AeC: A— )€ psp with i(A - )) < 0}

Psr(A) = pdp(A) U pgp(A4)
psr(A) ={ e C:A—- )€ pgp with i(A — X) =n}
for —co<n<

I’ (A) = the union of all trivial components of

(o) \ ToZr(a)) U ( U FE@l \ng(A>)

—oo<Nn<oo

Toc(A) = To(A) \ 0f'(A), where o®(A) denotes the set of
Riesz points of A, i.e. 0%(A) = a(A) \ gp(A4)

If K is a subset of C, we denote the set of all isolated points of K by
iso K.

Recall([1, 4, 8, 9, 10, 13, 18]) that an operator A € B(H) is said to
be p-hyponormal if

(A*A)P — (AA*)P > 0 for p € (0,1].

If p=1, A is said to be hyponormal and if p = 1/2, A is said to be semi-
hyponormal ([17]). If A is p-hyponormal, then A is also g-hyponormal
for every 0 < ¢ < p. An operator A is called log-hyponormal ([5, 6, 16])
if A is invertible and satisfies the following inequality

log(A*A) > log(AA™).

It is well known ([16]) that any invertible p-hyponormal operator is a
log-hyponormal operator and the converse is not true. Let H(p) denote
the class of all p-hyponormal operators (0 < p < 1/2) and L denote the
class of log-hyponormal operators. Let A € H(p) or L have the polar
decomposmon A = U|A|. Then the Aluthge tmnsform of A is defined
by A = |A|Y/2U|A|"/2. The Aluthge transform A, in conjunction with
some related arguments of Xia[17], has proved to be a very useful tools
in the study of p-hyponormal and log-hyponormal operators.

In this paper we prove that if A is a p-hyponormal or log-hyponormal
operator, then there exists an associated hyponormal operator T'. The
existence of T' is deduced from the Aluthge transform A of A . The rela-
tionship between A and T is a deep one: we exploit it here to study the
spectral properties of p-hyponormal and log-hyponormal operators. In
particular, it is shown that the operator A and T have the same spectral
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picture, which give a slight improvement of [18, Theorem 6]. Also, we
apply these results to give brief proofs of some well known spectral prop-
erties of p-hyponormal and log-hyponormal operators, amongst them
that the spectrum is a continuous function on these classes of operators.

2. Results

For an operator A € B(H), let Hy(A — ) denote the quasi-nilpotent
part,
Ho(A-2) ={z € H: lm ||(A-N"a|l* =0},

of A. Then (A — X\)7"(0) C Ho(A — A) for all natural numbers n and
X € C. Since hyponormal operators A € B(H) satisfy ||(A — A\)z||” <
[|(A — A)"z|| for all natural numbers n and unit vectors x € H, Ho(A —
A) = (A= X)7H0).

The following is the main result.

THEOREM 1. If A € H(p) or L, then there exists a hyponormal oper-
ator T such that the following holds.

(i) There exists a quasi-affinity X and an injection operator Y such
that TX = XA and AY = YX. Here the operators X and Y
are invertible in the case in which A € L; also, the operator
X is invertible in the case in which A € H(p) and 0 is not in
the approximate point spectrum of the pure (= completely non-
normal) part of A. S

(i) Ho(A—X) = (A —X)"10) = Ho(T — X) = (T — X\)7}(0) for all
reC.

(ili) 05(A) = 04(T), where o, stands for either of o, 0o, 000, 0a, Or,
05, Ob, Ow, Oc, Ote, Ore; Opre, Lo OF Doe. Also, i(A—X) = i(T — )
forall A e C .

(iv) If the function f is analytic in an open neighborhood of o(A),
then {\ € C: f(A)— A€ pSp}t={re€C: f(T)— X € pgp} and
Gu(f(A)) = ou(F(T)) = a(F(T)) = 0uol(F(T)).

Proof. Let A € H(p) or L. We start by constructing the “associated
hyponormal” operator T. If A € L has the polar decomposition A =
U|A|, then

{A(S,t)A(s,t)*}%‘i—’tl'S |A|2min(s,t) S {A(S,t)*A(s’t)}mi:-}-g?Q



Spectral properties of p-hyponormal and log-hyponormal operators 547

where A(s,t) = |A|SU|A|* for some numbers s,t > 0 ([15, Theorem
4]). The operator A(s,t) € H(m—';’%’—tl) Choose 0 < s < t such that
s+t = 1. Then A(s,t) = |A|U|A|*~°. Now, choose s = t (so that
A is similar to an H(1/2) operator); applying the Léwner inequality,
then it follows A is similar to an H(p) operator, 0 < p < 1/2, and
our problem reduces to that of constructing the associated hyponormal
operator T for a given A € H(p). Given A € H(p), decompose A
into its normal and pure parts by A = A, @ A;(with respect to the
decomposition H = H, & Hy, say). Then A; € H(p). Let A; have the
polar decomposition A; = Uy|A;]|, where (necessarily) Uy is an isometry.
Define the (first Aluthge) transform A of A; by A; = |A;|Y/2U;|A[/2.
Then Avl € 'H(p + 1/2)([1]), gllAlll/z = |A1I1/2A1 and AlUllAlll/2 =
Uy| A1) /2 A, (where | A1)Y/2 is a quasi-affinity and Ut | 4|2/ is injective ).
Define the (second Aluthge) transform T3 of 4; by Ty = (Zl) Then T)
is hyponormal ([1]), and there exists a quasi-affinity X; and an injective
operator Y such that Ty X; = X3 4; and A, Y, = VT, Let T = A, 8T).
Then T is hyponormal. Defining the quasi-affinity X by X = Iy & X,
and the injective operator Y by Y = Iy @Y it follows that TX = XA
and AY = YT. Here it is clear that the operators X and Y are invertible
in the case in which A € £ . Suppose now that A € H(p) and 0 ¢ g,(A41).
Then 0 ¢ o(]A;1]), the operator |A,| is invertible and the operator Ay is
similar to A;. Repeating this argument it now follows that the operator
X, is invertible. This proves (i).

Towards (ii), we assume that p = %, T=Ais hyponormal, and prove

that Ho(A — \) = (A — A)"1(0) = Ho(T — A) = (T — X\)~1(0): the proof
for p < % follows from a repeated application of the argument with
A € H(%) and T replaced by A € H(p) and A € H(p + %), respectively.
As seen in part (i) above, TX = XA, where X is the quasi-affinity

X = Iy, ®|A1|%. Let £ € Hy(A — )\). Then, as n — oo,
1 nouk 1 nont
(T = N)"Xz||? = | X (A= XN z||* < || X[ |(A - A)"z]|™ — 0.

Hence Xz € Ho(T —)) = (T — A)~1(0), which implies that X (4A—\)z =
0. Since X is injective, x € (A—X)7}(0) => Ho(A—-X) = (A—X)"}(0).
To prove that Ho(A — ) = Ho(T — )\) we argue as follows. If z €
(A=X)"1(0), then |A|Zz = |A|2z. Set y = |A|Z z; theny € (A—X)"1(0)
and |A|3(|]A| T z) = z. Conversely, if y € (A — A)~1(0) and |A|zy = «,
then [Al2y = [Ny =y = |)\|_Tlac =z € (A — \)"}0). Conclusion:
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z € (A—X)~1(0) if and only if there exists a y € (A — X)~*(0) such that
Al7y = z.

Let £ € Ho(A — \) = (A — X\)71(0). Then there exists a y € (A —
A)~1(0) such that |A|zy = . Sincey € (A—\)"1(0) = Iz = AA|zy =
|A|3 Ay = T|A|2y = Tz, Hy(A - )) C (T — N)~1(0) = Ho(T — X). For
the reverse inclusion, let 2 € Ho(T — A). Then AU|A|3z = A(U|AlZz).
Since A is a normal eigenvalue of A (all eigenvalues of a p-hyponormal
operator are normal), we have the following sequence of implications:

A*(U)A| z) = X(U|A|7z) = A3z = N(U|A|2z)
= |APz =Tz = |z
= |A|%x = |)\|%x
— Xz =Tz = |A|?(U]|A|?z)
= N7 |AIE (U]Alz) = |\ 7 |A]7 Az
— |A|Az = A|\Pz = \|A|%z
= (A—AN)Az =0.

Again, since ) is a normal eigenvalue of A, this implies that (A* -A)Az =
0 = Mz = |A|?z = |M\|*2 = Az = Az. Hence Ho(T — \) € (A -
A)7H0) = Ho(A = ).

The proof of (iii) of Theorem for the case in which o, stand for either
of 0, 0o, Ooo, Oa, 05, Op, OT 0y, either appears in or follows from the
proof of [18, Theorem 5]. It is clear from the similarity of A and T
in the case in which A € £ that i(A—)X) = ¢(T — A) for all A € C.
Furthermore, if A € H(p), then i(A— A} = (T — X) in the case in which
either A # 0([18, Lemma 3]) or 0 = A ¢ 04(A;1) (because then A and T
are similar). Finally, since 0 € 04(4:) = 0,(T1) implies that ranA4; and
ranT} are not closed, we conclude that i(A— ) =4(T —\) for all A € C.
Consequently, ['c(4) =T'o(T).

Now we show that gic(A) = 01e(T) and 0,.(A) = 0re(T). If we let
S denote either of A and T, then part (ii) of the theorem implies that
asc(S — A) <1 for all A € C, and hence that oS — ) < B(S — ) ([12,
Proposition 38.5)). Recall that

01e(S) = {\ € C : either ran(S — A) is not closed or a(S — ) = oo}
and

C\ 0re(S) = {} € C: ran(S — A) is closed and B(S — A) < oo}.
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Since i(A — \) = i(T — A) and a(A — A) = a(T — A) by part (ii) above,
B(A — X)) = B(T — A). Thus the only way o;.(A) and o1(T), as also
C\ 0r¢(A) and C\ g,-¢(T), can fail to be equal is that a(A - X) = o(T -
A) < oo and either ran(A—\) is closed but ran(T'— ) is not or ran(T— )
is closed but ran(A~—)) is not. (Recall that a(S—A) < B(S—A), so that
B(S — \) < 00 = a(S — A) < 00.) We consider the case ran(A — A) is
closed but ran(T — )) is not: the proof for the other case is similar (see
also the Remark below). If ran(A — ) is closed and 0 < a(A — X) < oo,
then either A — ) is injective or A is in the point spectrum of A. Since
A — )\ is injective == A — ) is left invertible == T — A is left invertible,
and X is in the point spectrum of A = \ is a normal eigenvalue of
T, in either case we have a contradiction. Hence 01.(A) = 05.(T) and
Ore(A) = 0re(T). Trivially, o.(A) = 0e(T) and oire(A) = G1re(T)-

Recall that the isolated points of the spectrum of a hyponormal op-
erator are eigenvalues of the operator and that the eigenvalues of a hy-
ponormal operator are normal eigenvalues of the operator. Hence if
A € 000(A) = 0o0(T), then A is a Riesz point of A (and T'). This implies
that T'oe(A) = Toe(T), and the proof of (iii) is complete.

To prove (iv), we start by noting that it is enough to consider poly-
nomials f. Thus, given A € C, let f(T) — A = ao [[;—, (T — X;) for some
scalar g and complex numbers \; such that A = ag[1,_;(A:). Then,
using the properties of the “index function”,

n
FIT) = xepdp & a [[(T - N) € psp
=1
ST -\ €pgpforalli=1,2,---,n
S X\ € 000(T) =000(A) forall i =1,2,--+,n
SA- N €pipforalli=1,2,---,n

& ao [ [(A-N) € pgr

=1

& f(A) — X € psF
and

FT) = X € p3p € Ai € Too(T)(= 000(A)) for all i = 1,2,-- ,m
& X € 000(F(T))
S A\ €000(f(A)) foralli=1,2,--- 'n
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Hence
ou(f(A)) = o(f(A) —{r€ C: f(A) — A € p3r}
= f(0(A)) — 0o (f(T))
= f(0(T)) — 700 (f(T))
= 0(f(T)) — 0o (£(T))
=0o(f(T)) —{r€C: f(T) - X € pr}
= ouw(f(T))- O

REMARK. An alternative proof of g.(A) = 0.(T) in part (iii) of The-
orem 1 using the Calkin map 7 is obtained as follows. We may assume
without loss of generality that p = 27" for some natural number n.
Since

T (|A|2) =7 (A*A) =n(A")7(A) = m(A) m(A)
and ) .
m(142) == ({{4P"}7) = (x (141))",
it follows that
™ (JAI*P) = {m(A")m(4)}
and
m (|APP — |A%?P) = {n(A")m(A)} — {n(A)m(A")}P.

Recall that if A4 is an algebra of operators and a € A, then a is positive
if and only if the (algebra) numerical range V(A;a) of a is a subset of
the set Ry of non-negative reals. Let a = |A|?? — |A*|*’. Then the
p-hyponormality of A implies that V(B(H);a) C R,. Since

V(C(H)im(a)) =V (a+J: J € K(H)) C V(B(H);a) C Ry,

7(a) is a positive operator [3, Proposition 10.7], and hence n(A) € H(p).
Define Ay, Ay =T, A and T as in the proof of Theorem 1(i). Then

r(dr) = (O)r(lr]) = m(0) (x(l4a]D))
n(dy) = n (J4s]}) m (U 7 (141]3) = m(AD)

——
——— e

7(A;), where 7(4;) € H(p + 3) and n(T1) €
= 0.(T) if and only if o(n(A1)) = o(n(T1)).

and 7(Ty) = 7T(A1) =
H(1). Clearly, o.(A)
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Since o(ab) \ {0} = o(ba) \ {0} for all a,b € A for every algebra A
3, Proposition 5.3}, to prove 0.(4) = o.(T) we have to prove only
that 0 € o(m(A1)) if and only if 0 € o(n(T1)). Furthermore, since
i(A; — X) = i(Ty — A) for all A, and both A; and T; are injective, it
- will suffice to prove that ranA; is not closed if and only if ranT} is not
closed. Assume that 0 € o(m(A;)). Then ranA; is not closed. We assert
that ranT} is not closed. For if ranT) is closed, then T is left invertible,
which (since ||[Thz|| £ IH/LI%HH]Al]%xH for all z € Hy) implies that | A, |
is invertible. Consequently, A; is left invertible, which (in turn) implies
that A; is left invertible. Hence ranA; is closed: a contradiction. A
similar argument shows that ranT) is not closed implies that ranA,; is
not closed, and the proof is complete.

3. Applications

In this section we apply Theorem 1 to Weyl’s theorem and the spectral
continuity. In the following we assume (without explicitly saying so) that
the corresponding results are known to hold for hyponormal operators.
Let A € H(p) or £, and let T be the associated hyponormal operator.
It is then clear from Theorem 1 that

0w(A) = 0u(T) = 0(T) = 06e(T) = 0 (A) = 700 (4),

i.e., A satisfies Weyl’s theorem. Again, if the function f is analytic on
an open neighborhood of ¢(A), then

ou(f(A)) = o(f(A)) = 0es(f(A4)) = flow(A))

and f(A) satisfies Weyl’s theorem. We have

COROLLARY 2.([4, 10]) If A € H(p) or L, then A satisfies Weyl’s
theorem. Furthermore, if the function f is analytic on an open neigh-
borhood of o(A), then f(A) satisfies Weyl’s theorem.

Let Pi(A) = {\ € C: A — )X is semi-Fredholm with i(4 — A) # 0}.
Then since i(A — A) = i(T — A) for all A € C, we have P;(A) = P (T).
Recall from [7] that the function “o” is continuous at the points B €

B(H) if and only if, for each A € o(B) \ Pi(B) and € > 0, the e
neighborhood of A contains a component of

0°(B) = 0oo(B) U [07¢(B) Nog.(B)].
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Let A € 0(A) \ Pi(A) = o(T) \ PAA(T). Since hyponormal operators are
points of continuity of o [14], given € > 0 and X € o(T) \ Pi(T), the
e-neighborhood of A contains a component of o°(T) = 0°(A). We have

proved:

COROLLARY 3.([6, 8, 11, 13]) If A € H(p) or L, then A is a point
of continuity of o.

More is true. The conclusion that A satisfies Weyl’s theorem implies
that op(A) = 0 (A) and that 0o0(A) coincides with the set of normal
eigenvalues, denoted o, (A), of A. Hence

0e(A) N op(A) =0e(A) Nooo(A)
C ow(A)Nooo(A)
= (0(A) \ 7o0(4)) Nooo(A)
C Toe.

Since (already) A is a point of continuity of ¢, [2, Theorem 14.17] implies
the following

COROLLARY 4. If A € H(p) or L, then A is a point of continuity of
0.6} o-b, olw .

The operator B € B(H) is said to satisfy a- Weyl’s theorem if
ee(B) = 0a(B) \ 05,(B). .
In general, it is true that
a-Weyl’s theorem = Weyl’s theorem.

Let A* € H(p) or L, and let T* be the associated hyponormal oper-
ator. Then
Too(A) = 050(A) = 05, (T),

and
Gfe(A) = Ure(A*)* - Ure(T*)* = UZe(T)

= 0a(T) \ 05, (T) = 0a(A) \ 055(A).
Thus we have

COROLLARY 5.([6, 8, 11]) If A* € H(p) or L, then A satisfies a-
Weyl’s theorem. Furthermore, A is a point of continuity of oge.
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Proof. As already seen, A satisfies a-Weyl’s theorem. Recall that
hyponormal operators are points of continuity of os.. Hence (see [2,
Theorem 14.24])

(i) psp (T) = interior[pg g (T)],

(i) oe(T) = boundary(p3,(T)) U p57 (T) UTee (T),

(iii) if X € ogre(T) is an interior point of [p%p(T')| for some non-zero
integer n, then A € I'o(T'). Since

PER(T) = pER(A), pEp(T) = pEp(A) and Toe(T) = Toe(A),

conditions (i), (i) and (iii) are satisfied with T replaced by A. Hence by
[2, Theorem 14.24], A is a point of continuity of oy.. a
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