# REMARKS ON SPECTRAL PROPERTIES OF p-HYPONORMAL AND LOG-HYPONORMAL OPERATORS

BHAGWATI P. DUGGAL AND IN HO JEON

ABSTRACT. In this paper it is proved that for p-hyponormal or log-hyponormal operator A there exist an associated hyponormal operator T, a quasi-affinity X and an injection operator Y such that TX = XA and AY = YT. The operator A and T have the same spectral picture. We apply these results to give brief proofs of some well known spectral properties of p-hyponormal and log-hyponormal operators, amongst them that the spectrum is a continuous function on these classes of operators.

### 1. Introduction

Let H be a complex separable infinite dimensional Hilbert space and let B(H) denote the Banach algebra of bounded linear operators acting on H. For an operator  $A \in B(H)$ , we write ker A and ran A for the null space and the range of A. An operator  $A \in B(H)$  is called semi-Fredholm, denoted  $A \in \rho_{SF}$ , if ran A is closed and either  $\alpha(A) := \dim(\ker A)$  or  $\beta(A) := \dim(\ker A^*)$  is finite; in this case the index of A, denoted i(A), is defined by  $i(A) = \alpha(A) - \beta(A)$ . If  $\alpha(A)$  and  $\beta(A)$  are both finite, then A is called Fredholm. If  $A \in \rho_{SF}$  and i(A) = 0, then A is called Weyl, denoted  $A \in \rho_{SF}^\circ$ . Also, A is called Browder if A is Fredholm and  $A - \lambda$  (:=  $A - \lambda I_H$ ) is invertible for sufficiently small  $\lambda \neq 0 \in \mathbb{C}$ . Recall([12]) that the ascent, denoted asc(A), and the descent, denoted asc(A), of  $A \in B(H)$  are the extended integers given by  $asc(A) = \inf\{n \geq 0 : \ker A^n = \ker A^{n+1}\}$  and  $asc(A) = \inf\{n \geq 0 : \ker A^n = \ker A^{n+1}\}$  and  $asc(A) = \inf\{n \geq 0 : \ker A^n = \ker A^{n+1}\}$ 

Received April 13, 2004.

<sup>2000</sup> Mathematics Subject Classification: 47B20, 47A10.

Key words and phrases: p-hyponormal operator, log-hyponormal operator, spectral picture.

This work was supported by Korea Research Foundation Grant(KRF-2001-050-D0001).

ran  $A^n = \operatorname{ran} A^{n+1}$ , respectively. The infimum over the empty set is taken to be  $\infty$ . If the ascent and the descent of A are both finite, then  $\operatorname{asc}(A) = \operatorname{des}(A)([12, \operatorname{Proposition } 38.4])$ . Let K(H) denote the ideal of all compact operators in B(H) and let C(H) = B(H)/K(H) be the Calkin algebra with the Calkin canonical projection  $\pi: B(H) \to C(H)$ .

Throughout this paper we shall use the following standard notations for various spectra:

$$\sigma(A) = \{\lambda \in \mathbb{C} : A - \lambda \text{ is not invertible} \}$$
 for the spectrum of  $A$ 

$$\sigma_{\ell}(A) = \{\lambda \in \mathbb{C}: A - \lambda \text{ is not left invertible}\}$$

for the left spectrum of A

$$\sigma_r(A) = \{\lambda \in \mathbb{C} : A - \lambda \text{ is not right invertible}\}$$

for the right spectrum of A

$$\sigma_a(A) = \{ \lambda \in \mathbb{C} : A - \lambda \text{ is not bounded below} \}$$
 for the approximate point spectrum of  $A$ 

$$\sigma_{\delta}(A) = \{ \lambda \in \mathbb{C} : A - \lambda \text{ is not surjective} \}$$
 for the approximate defect spectrum of  $A$ 

$$\sigma_e(A) = \{ \lambda \in \mathbb{C} : A - \lambda \text{ is not Fredholm} \}$$
for the essential spectrum of  $A$ 

$$\sigma_w(A) = \{\lambda \in \mathbb{C} : A - \lambda \text{ is not Weyl}\}\$$
for the Weyl spectrum of  $A$ 

$$\sigma_b(A) = \{ \lambda \in \mathbb{C} : A - \lambda \text{ is not Browder} \}$$
  
for the Browder spectrum of  $A$ 

$$\sigma_{\ell e}(A) = \sigma_{\ell}(\pi(A))$$
 for the left essential spectrum of A

$$\sigma_{re}(A) = \sigma_r(\pi(A))$$
 for the right essential spectrum of  $A$ 

$$\sigma_{\ell re}(A) = \sigma_{\ell e}(A) \cap \sigma_{re}(A)$$

$$\sigma_{\circ}(A) = \{\lambda \in \mathbb{C} : 0 < \alpha(A - \lambda)\}$$
 for the point spectrum of A

In Hilbert context, it is well known that

$$\sigma_{\ell}(A) = \sigma_a(A)$$
 and  $\sigma_r(A) = \sigma_{\delta}(A)$ .

For convenient let us introduce the following additional notations:

$$\rho_{SF}(A) = \{\lambda \in \mathbb{C} : A - \lambda \in \rho_{SF}\} 
\rho_{SF}^{\circ}(A) = \{\lambda \in \mathbb{C} : A - \lambda \in \rho_{SF}^{\circ}\} 
\rho_{SF}^{+}(A) = \{\lambda \in \mathbb{C} : A - \lambda \in \rho_{SF} \text{ with } i(A - \lambda) > 0\}$$

$$\rho_{SF}^{-}(A) = \{ \lambda \in \mathbb{C} : A - \lambda \in \rho_{SF} \text{ with } i(A - \lambda) < 0 \}$$

$$\rho_{SF}^{\pm}(A) = \rho_{SF}^{+}(A) \cup \rho_{SF}^{-}(A)$$

$$\rho_{SF}^{n}(A) = \{ \lambda \in \mathbb{C} : A - \lambda \in \rho_{SF} \text{ with } i(A - \lambda) = n \}$$
for  $-\infty < n < \infty$ 

 $\Gamma_{\circ}(A)$  = the union of all trivial components of

$$\left(\sigma(A)\setminus \overline{[\rho_{SF}^{\pm}(A)]}\right) \cup \left(\bigcup_{-\infty < n < \infty} \overline{[\rho_{SF}^{n}(A)]}\setminus \rho_{SF}^{n}(A)\right)$$

$$\Gamma_{\circ e}(A) = \Gamma_{\circ}(A) \setminus \sigma^{R}(A)$$
, where  $\sigma^{R}(A)$  denotes the set of Riesz points of A, i.e.  $\sigma^{R}(A) = \sigma(A) \setminus \sigma_{b}(A)$ 

If K is a subset of  $\mathbb{C}$ , we denote the set of all isolated points of K by iso K.

Recall([1, 4, 8, 9, 10, 13, 18]) that an operator  $A \in B(H)$  is said to be *p-hyponormal* if

$$(A^*A)^p - (AA^*)^p \ge 0$$
 for  $p \in (0,1]$ .

If p = 1, A is said to be hyponormal and if p = 1/2, A is said to be semi-hyponormal ([17]). If A is p-hyponormal, then A is also q-hyponormal for every  $0 < q \le p$ . An operator A is called log-hyponormal ([5, 6, 16]) if A is invertible and satisfies the following inequality

$$\log(A^*A) \ge \log(AA^*).$$

It is well known ([16]) that any invertible p-hyponormal operator is a log-hyponormal operator and the converse is not true. Let  $\mathcal{H}(p)$  denote the class of all p-hyponormal operators ( $0 ) and <math>\mathcal{L}$  denote the class of log-hyponormal operators. Let  $A \in \mathcal{H}(p)$  or  $\mathcal{L}$  have the polar decomposition A = U|A|. Then the Aluthge transform of A is defined by  $\widetilde{A} = |A|^{1/2}U|A|^{1/2}$ . The Aluthge transform  $\widetilde{A}$ , in conjunction with some related arguments of Xia[17], has proved to be a very useful tools in the study of p-hyponormal and log-hyponormal operators.

In this paper we prove that if A is a p-hyponormal or log-hyponormal operator, then there exists an associated hyponormal operator T. The existence of T is deduced from the Aluthge transform  $\widetilde{A}$  of A. The relationship between A and T is a deep one: we exploit it here to study the spectral properties of p-hyponormal and log-hyponormal operators. In particular, it is shown that the operator A and T have the same spectral

picture, which give a slight improvement of [18, Theorem 6]. Also, we apply these results to give brief proofs of some well known spectral properties of p-hyponormal and log-hyponormal operators, amongst them that the spectrum is a continuous function on these classes of operators.

#### 2. Results

For an operator  $A \in B(H)$ , let  $H_0(A - \lambda)$  denote the quasi-nilpotent part,

$$H_0(A-\lambda) = \left\{ x \in H : \lim_{n \to \infty} ||(A-\lambda)^n x||^{\frac{1}{n}} = 0 \right\},\,$$

of A. Then  $(A - \lambda)^{-n}(0) \subseteq H_0(A - \lambda)$  for all natural numbers n and  $\lambda \in \mathbb{C}$ . Since hyponormal operators  $A \in B(H)$  satisfy  $||(A - \lambda)x||^n \le ||(A - \lambda)^n x||$  for all natural numbers n and unit vectors  $x \in H$ ,  $H_0(A - \lambda) = (A - \lambda)^{-1}(0)$ .

The following is the main result.

THEOREM 1. If  $A \in \mathcal{H}(p)$  or  $\mathcal{L}$ , then there exists a hyponormal operator T such that the following holds.

- (i) There exists a quasi-affinity X and an injection operator Y such that TX = XA and AY = YX. Here the operators X and Y are invertible in the case in which  $A \in \mathcal{L}$ ; also, the operator X is invertible in the case in which  $A \in \mathcal{H}(p)$  and 0 is not in the approximate point spectrum of the pure (= completely nonnormal) part of A.
- (ii)  $H_0(A \hat{\lambda}) = (A \lambda)^{-1}(0) = H_0(T \lambda) = (T \lambda)^{-1}(0)$  for all  $\lambda \in \mathbb{C}$ .
- (iii)  $\sigma_s(A) = \sigma_s(T)$ , where  $\sigma_s$  stands for either of  $\sigma$ ,  $\sigma_o$ ,  $\sigma_{oo}$ ,  $\sigma_a$ ,  $\sigma_r$ ,  $\sigma_{\delta}$ ,  $\sigma_b$ ,  $\sigma_w$ ,  $\sigma_e$ ,  $\sigma_{\ell e}$ ,  $\sigma_{\ell r e}$ ,  $\sigma_{\ell r e}$ ,  $\sigma_{o}$  or  $\Gamma_{oe}$ . Also,  $i(A \lambda) = i(T \lambda)$  for all  $\lambda \in \mathbb{C}$ .
- (iv) If the function f is analytic in an open neighborhood of  $\sigma(A)$ , then  $\{\lambda \in \mathbb{C} : f(A) \lambda \in \rho_{SF}^{\circ}\} = \{\lambda \in \mathbb{C} : f(T) \lambda \in \rho_{SF}^{\circ}\}$  and  $\sigma_w(f(A)) = \sigma_w(f(T)) = \sigma(f(T)) \sigma_{\circ\circ}(f(T))$ .

*Proof.* Let  $A \in \mathcal{H}(p)$  or  $\mathcal{L}$ . We start by constructing the "associated hyponormal" operator T. If  $A \in \mathcal{L}$  has the polar decomposition A = U|A|, then

$$\{A(s,t)A(s,t)^*\}^{\frac{\min(s,t)}{s+t}} \le |A|^{2\min(s,t)} \le \{A(s,t)^*A(s,t)\}^{\frac{\min(s,t)}{s+t}},$$

where  $A(s,t) = |A|^s U |A|^t$  for some numbers s,t>0 ([15, Theorem 4]). The operator  $A(s,t) \in \mathcal{H}(\frac{\min(s,t)}{s+t})$ . Choose  $0 < s \le t$  such that s+t=1. Then  $A(s,t)=|A|^sU|A|^{1-s}$ . Now, choose s=t (so that A is similar to an  $\mathcal{H}(1/2)$  operator); applying the Löwner inequality, then it follows A is similar to an  $\mathcal{H}(p)$  operator, 0 , andour problem reduces to that of constructing the associated hyponormal operator T for a given  $A \in \mathcal{H}(p)$ . Given  $A \in \mathcal{H}(p)$ , decompose A into its normal and pure parts by  $A=A_{\circ}\oplus A_{1}$  (with respect to the decomposition  $H = H_0 \oplus H_1$ , say). Then  $A_1 \in \mathcal{H}(p)$ . Let  $A_1$  have the polar decomposition  $A_1 = U_1|A_1|$ , where (necessarily)  $U_1$  is an isometry. Define the (first Aluthge) transform  $\widetilde{A}_1$  of  $A_1$  by  $\widetilde{A}_1 = |A_1|^{1/2} U_1 |A_1|^{1/2}$ . Then  $\widetilde{A}_1 \in \mathcal{H}(p+1/2)([1])$ ,  $\widetilde{A}_1 |A_1|^{1/2} = |A_1|^{1/2} A_1$  and  $A_1 U_1 |A_1|^{1/2} = |A_1|^{1/2} A_1$  $U_1|A_1|^{1/2}\widetilde{A}_1$  (where  $|A_1|^{1/2}$  is a quasi-affinity and  $U_1|A_1|^{1/2}$  is injective). Define the (second Aluthge) transform  $T_1$  of  $A_1$  by  $T_1 = (\widetilde{A}_1)$ . Then  $T_1$ is hyponormal ([1]), and there exists a quasi-affinity  $X_1$  and an injective operator  $Y_1$  such that  $T_1X_1 = X_1A_1$  and  $A_1Y_1 = Y_1T_1$ . Let  $T = A_0 \oplus T_1$ . Then T is hyponormal. Defining the quasi-affinity X by  $X = I_{H_0} \oplus X_1$ and the injective operator Y by  $Y = I_{H_o} \oplus Y_1$  it follows that TX = XAand AY = YT. Here it is clear that the operators X and Y are invertible in the case in which  $A \in \mathcal{L}$ . Suppose now that  $A \in \mathcal{H}(p)$  and  $0 \notin \sigma_a(A_1)$ . Then  $0 \notin \sigma(|A_1|)$ , the operator  $|A_1|$  is invertible and the operator  $\widetilde{A}_1$  is similar to  $A_1$ . Repeating this argument it now follows that the operator  $X_1$  is invertible. This proves (i).

Towards (ii), we assume that  $p = \frac{1}{2}$ ,  $T = \tilde{A}$  is hyponormal, and prove that  $H_0(A - \lambda) = (A - \lambda)^{-1}(0) = H_0(T - \lambda) = (T - \lambda)^{-1}(0)$ : the proof for  $p < \frac{1}{2}$  follows from a repeated application of the argument with  $A \in \mathcal{H}(\frac{1}{2})$  and T replaced by  $A \in \mathcal{H}(p)$  and  $\tilde{A} \in \mathcal{H}(p + \frac{1}{2})$ , respectively. As seen in part (i) above, TX = XA, where X is the quasi-affinity  $X = I_{H_0} \oplus |A_1|^{\frac{1}{2}}$ . Let  $x \in H_0(A - \lambda)$ . Then, as  $n \longrightarrow \infty$ ,

$$\|(T-\lambda)^n X x\|^{\frac{1}{2}} = \|X(A-\lambda)^n x\|^{\frac{1}{n}} \le \|X\|^{\frac{1}{n}} \|(A-\lambda)^n x\|^{\frac{1}{n}} \longrightarrow 0.$$

Hence  $Xx \in H_0(T-\lambda) = (T-\lambda)^{-1}(0)$ , which implies that  $X(A-\lambda)x = 0$ . Since X is injective,  $x \in (A-\lambda)^{-1}(0) \Longrightarrow H_0(A-\lambda) = (A-\lambda)^{-1}(0)$ . To prove that  $H_0(A-\lambda) = H_0(T-\lambda)$  we argue as follows. If  $x \in (A-\lambda)^{-1}(0)$ , then  $|A|^{\frac{1}{2}}x = |\lambda|^{\frac{1}{2}}x$ . Set  $y = |\lambda|^{\frac{-1}{2}}x$ ; then  $y \in (A-\lambda)^{-1}(0)$  and  $|A|^{\frac{1}{2}}(|\lambda|^{\frac{-1}{2}}x) = x$ . Conversely, if  $y \in (A-\lambda)^{-1}(0)$  and  $|A|^{\frac{1}{2}}y = x$ , then  $|A|^{\frac{1}{2}}y = |\lambda|^{\frac{1}{2}}y \Longrightarrow y = |\lambda|^{\frac{-1}{2}}x \Longrightarrow x \in (A-\lambda)^{-1}(0)$ . Conclusion:

 $x \in (A-\lambda)^{-1}(0)$  if and only if there exists a  $y \in (A-\lambda)^{-1}(0)$  such that  $|A|^{\frac{1}{2}}y = x$ .

Let  $x \in H_0(A - \lambda) = (A - \lambda)^{-1}(0)$ . Then there exists a  $y \in (A - \lambda)^{-1}(0)$  such that  $|A|^{\frac{1}{2}}y = x$ . Since  $y \in (A - \lambda)^{-1}(0) \Longrightarrow \lambda x = \lambda |A|^{\frac{1}{2}}y = |A|^{\frac{1}{2}}Ay = T|A|^{\frac{1}{2}}y = Tx$ ,  $H_0(A - \lambda) \subseteq (T - \lambda)^{-1}(0) = H_0(T - \lambda)$ . For the reverse inclusion, let  $x \in H_0(T - \lambda)$ . Then  $\lambda U|A|^{\frac{1}{2}}x = A(U|A|^{\frac{1}{2}}x)$ . Since  $\lambda$  is a normal eigenvalue of A (all eigenvalues of a p-hyponormal operator are normal), we have the following sequence of implications:

$$A^{*}(U|A|^{\frac{1}{2}}x) = \overline{\lambda}(U|A|^{\frac{1}{2}}x) \Longrightarrow |A|^{\frac{3}{2}}x = \overline{\lambda}(U|A|^{\frac{1}{2}}x)$$

$$\Longrightarrow |A|^{2}x = \overline{\lambda}Tx = |\lambda|^{2}x$$

$$\Longrightarrow |A|^{\frac{1}{2}}x = |\lambda|^{\frac{1}{2}}x$$

$$\Longrightarrow \lambda x = Tx = |A|^{\frac{1}{2}}(U|A|^{\frac{1}{2}}x)$$

$$= |\lambda|^{\frac{-1}{2}}|A|^{\frac{1}{2}}(U|A|x) = |\lambda|^{\frac{-1}{2}}|A|^{\frac{1}{2}}Ax$$

$$\Longrightarrow |A|^{\frac{1}{2}}Ax = \lambda|\lambda|^{\frac{1}{2}}x = \lambda|A|^{\frac{1}{2}}x$$

$$\Longrightarrow (A - \lambda)Ax = 0.$$

Again, since  $\lambda$  is a normal eigenvalue of A, this implies that  $(A^* - \overline{\lambda})Ax = 0 \Longrightarrow \overline{\lambda}Ax = |A|^2x = |\lambda|^2x \Longrightarrow Ax = \lambda x$ . Hence  $H_0(T - \lambda) \subseteq (A - \lambda)^{-1}(0) = H_0(A - \lambda)$ .

The proof of (iii) of Theorem for the case in which  $\sigma_s$  stand for either of  $\sigma$ ,  $\sigma_o$ ,  $\sigma_{oo}$ ,  $\sigma_a$ ,  $\sigma_\delta$ ,  $\sigma_b$ , or  $\sigma_w$  either appears in or follows from the proof of [18, Theorem 5]. It is clear from the similarity of A and T in the case in which  $A \in \mathcal{L}$  that  $i(A - \lambda) = i(T - \lambda)$  for all  $\lambda \in \mathbb{C}$ . Furthermore, if  $A \in \mathcal{H}(p)$ , then  $i(A - \lambda) = i(T - \lambda)$  in the case in which either  $\lambda \neq 0$ ([18, Lemma 3]) or  $0 = \lambda \notin \sigma_a(A_1)$  (because then A and T are similar). Finally, since  $0 \in \sigma_a(A_1) = \sigma_a(T_1)$  implies that  $\operatorname{ran} A_1$  and  $\operatorname{ran} T_1$  are not closed, we conclude that  $i(A - \lambda) = i(T - \lambda)$  for all  $\lambda \in \mathbb{C}$ . Consequently,  $\Gamma_o(A) = \Gamma_o(T)$ .

Now we show that  $\sigma_{le}(A) = \sigma_{le}(T)$  and  $\sigma_{re}(A) = \sigma_{re}(T)$ . If we let S denote either of A and T, then part (ii) of the theorem implies that  $\operatorname{asc}(S-\lambda) \leq 1$  for all  $\lambda \in \mathbb{C}$ , and hence that  $\alpha(S-\lambda) \leq \beta(S-\lambda)$  ([12, Proposition 38.5]). Recall that

$$\sigma_{le}(S) = \{\lambda \in \mathbb{C} : \text{either ran}(S - \lambda) \text{ is not closed or } \alpha(S - \lambda) = \infty\}$$
 and

$$\mathbb{C} \setminus \sigma_{re}(S) = \{\lambda \in \mathbb{C} : ran(S - \lambda) \text{ is closed and } \beta(S - \lambda) < \infty\}.$$

Since  $i(A-\lambda)=i(T-\lambda)$  and  $\alpha(A-\lambda)=\alpha(T-\lambda)$  by part (ii) above,  $\beta(A-\lambda)=\beta(T-\lambda)$ . Thus the only way  $\sigma_{le}(A)$  and  $\sigma_{le}(T)$ , as also  $\mathbb{C}\setminus\sigma_{re}(A)$  and  $\mathbb{C}\setminus\sigma_{re}(T)$ , can fail to be equal is that  $\alpha(A-\lambda)=\alpha(T-\lambda)<\infty$  and either  $\operatorname{ran}(A-\lambda)$  is closed but  $\operatorname{ran}(T-\lambda)$  is not or  $\operatorname{ran}(T-\lambda)$  is closed but  $\operatorname{ran}(A-\lambda)$  is not. (Recall that  $\alpha(S-\lambda)\leq\beta(S-\lambda)$ , so that  $\beta(S-\lambda)<\infty\Longrightarrow\alpha(S-\lambda)<\infty$ .) We consider the case  $\operatorname{ran}(A-\lambda)$  is closed but  $\operatorname{ran}(T-\lambda)$  is not: the proof for the other case is similar (see also the Remark below). If  $\operatorname{ran}(A-\lambda)$  is closed and  $0\leq\alpha(A-\lambda)<\infty$ , then either  $A-\lambda$  is injective or  $\lambda$  is in the point spectrum of  $\lambda$ . Since  $\lambda = \lambda$  is injective  $\lambda = \lambda$  is left invertible, and  $\lambda$  is in the point spectrum of  $\lambda = \lambda$  is a normal eigenvalue of  $\lambda = \lambda$  in either case we have a contradiction. Hence  $\lambda = \lambda$  is an  $\lambda = \lambda$  in either case we have a contradiction. Hence  $\lambda = \lambda$  is  $\lambda = \lambda$  is an  $\lambda = \lambda$  in either case we have a contradiction. Hence  $\lambda = \lambda$  is  $\lambda = \lambda$  is an  $\lambda = \lambda$  in either case we have a contradiction. Hence  $\lambda = \lambda$  is  $\lambda = \lambda$  is an  $\lambda = \lambda$  in either case we have a contradiction. Hence  $\lambda = \lambda$  is  $\lambda = \lambda$  is  $\lambda = \lambda$ .

Recall that the isolated points of the spectrum of a hyponormal operator are eigenvalues of the operator and that the eigenvalues of a hyponormal operator are normal eigenvalues of the operator. Hence if  $\lambda \in \sigma_{oo}(A) = \sigma_{oo}(T)$ , then  $\lambda$  is a Riesz point of A (and T). This implies that  $\Gamma_{oe}(A) = \Gamma_{oe}(T)$ , and the proof of (iii) is complete.

To prove (iv), we start by noting that it is enough to consider polynomials f. Thus, given  $\lambda \in \mathbb{C}$ , let  $f(T) - \lambda = a_0 \prod_{i=1}^n (T - \lambda_i)$  for some scalar  $a_0$  and complex numbers  $\lambda_i$  such that  $\lambda = a_0 \prod_{i=1}^n (\lambda_i)$ . Then, using the properties of the "index function",

$$f(T) - \lambda \in \rho_{SF}^{\circ} \Leftrightarrow a_0 \prod_{i=1}^{n} (T - \lambda_i) \in \rho_{SF}^{\circ}$$

$$\Leftrightarrow T - \lambda_i \in \rho_{SF}^{\circ} \text{ for all } i = 1, 2, \cdots, n$$

$$\Leftrightarrow \lambda_i \in \sigma_{\circ\circ}(T) = \sigma_{\circ\circ}(A) \text{ for all } i = 1, 2, \cdots, n$$

$$\Leftrightarrow A - \lambda_i \in \rho_{SF}^{\circ} \text{ for all } i = 1, 2, \cdots, n$$

$$\Leftrightarrow a_0 \prod_{i=1}^{n} (A - \lambda_i) \in \rho_{SF}^{\circ}$$

$$\Leftrightarrow f(A) - \lambda \in \rho_{SF}^{\circ}$$

and

$$\begin{split} f(T) - \lambda &\in \rho_{SF}^{\circ} \Leftrightarrow \lambda_{i} \in \sigma_{\circ \circ}(T) (= \sigma_{\circ \circ}(A)) \text{ for all } i = 1, 2, \cdots, n \\ &\Leftrightarrow \lambda_{i} \in \sigma_{\circ \circ}(f(T)) \\ &\Leftrightarrow \lambda_{i} \in \sigma_{\circ \circ}(f(A)) \text{ for all } i = 1, 2, \cdots, n \end{split}$$

Hence

$$\begin{split} \sigma_w(f(A)) &= \sigma(f(A)) - \{\lambda \in \mathbb{C} : f(A) - \lambda \in \rho_{SF}^{\circ}\} \\ &= f(\sigma(A)) - \sigma_{\circ\circ}(f(T)) \\ &= f(\sigma(T)) - \sigma_{\circ\circ}(f(T)) \\ &= \sigma(f(T)) - \sigma_{\circ\circ}(f(T)) \\ &= \sigma(f(T)) - \{\lambda \in \mathbb{C} : f(T) - \lambda \in \rho_{SF}^{\circ}\} \\ &= \sigma_w(f(T)). \end{split}$$

REMARK. An alternative proof of  $\sigma_e(A) = \sigma_e(T)$  in part (iii) of Theorem 1 using the Calkin map  $\pi$  is obtained as follows. We may assume without loss of generality that  $p = 2^{-n}$  for some natural number n. Since

$$\pi(|A|^2) = \pi(A^*A) = \pi(A^*)\pi(A) = \pi(A)^*\pi(A)$$

and

$$\pi\left(|A|^2\right) = \pi\left(\left\{|A|^{2p}\right\}^{\frac{1}{p}}\right) = \left(\pi\left(|A|^{2p}\right)\right)^{\frac{1}{p}},$$

it follows that

$$\pi(|A|^{2p}) = {\pi(A^*)\pi(A)}^p$$

and

$$\pi (|A|^{2p} - |A^*|^{2p}) = {\pi(A^*)\pi(A)}^p - {\pi(A)\pi(A^*)}^p.$$

Recall that if  $\mathcal{A}$  is an algebra of operators and  $a \in \mathcal{A}$ , then a is positive if and only if the (algebra) numerical range  $V(\mathcal{A}; a)$  of a is a subset of the set  $\mathcal{R}_+$  of non-negative reals. Let  $a = |A|^{2p} - |A^*|^{2p}$ . Then the p-hyponormality of A implies that  $V(B(H); a) \subseteq \mathcal{R}_+$ . Since

$$V\left(C(H);\pi(a)\right) = \bigcap V\left(a+J:J\in K(H)\right) \subseteq V(B(H);a) \subseteq \mathcal{R}_{+},$$

 $\pi(a)$  is a positive operator [3, Proposition 10.7], and hence  $\pi(A) \in \mathcal{H}(p)$ . Define  $\tilde{A}_1$ ,  $\tilde{\tilde{A}}_1 = T_1$ ,  $\tilde{A}$  and T as in the proof of Theorem 1(i). Then

$$\pi(A_1) = \pi(U)\pi(|A_1|) = \pi(U_1) \left(\pi(|A_1|^{\frac{1}{2}})\right)^2,$$
  
$$\pi(\tilde{A}_1) = \pi\left(|A_1|^{\frac{1}{2}}\right)\pi(U_1)\pi\left(|A_1|^{\frac{1}{2}}\right) = \widetilde{\pi(A_1)}$$

and 
$$\pi(T_1) = \pi(\tilde{A}_1) = \widetilde{\pi(A_1)}$$
, where  $\widetilde{\pi(A_1)} \in \mathcal{H}(p + \frac{1}{2})$  and  $\pi(T_1) \in \mathcal{H}(1)$ . Clearly,  $\sigma_e(A) = \sigma_e(T)$  if and only if  $\sigma(\pi(A_1)) = \sigma(\pi(T_1))$ .

Since  $\sigma(ab)\setminus\{0\}=\sigma(ba)\setminus\{0\}$  for all  $a,b\in\mathcal{A}$  for every algebra  $\mathcal{A}$  [3, Proposition 5.3], to prove  $\sigma_e(A)=\sigma_e(T)$  we have to prove only that  $0\in\sigma(\pi(A_1))$  if and only if  $0\in\sigma(\pi(T_1))$ . Furthermore, since  $i(A_1-\lambda)=i(T_1-\lambda)$  for all  $\lambda$ , and both  $A_1$  and  $T_1$  are injective, it will suffice to prove that  $\operatorname{ran} A_1$  is not closed if and only if  $\operatorname{ran} T_1$  is not closed. Assume that  $0\in\sigma(\pi(A_1))$ . Then  $\operatorname{ran} A_1$  is not closed. We assert that  $\operatorname{ran} T_1$  is not closed. For if  $\operatorname{ran} T_1$  is closed, then  $T_1$  is left invertible, which (since  $||T_1x|| \leq |||\tilde{A}_1|^{\frac{1}{2}}||||\tilde{A}_1|^{\frac{1}{2}}x||$  for all  $x\in H_1$ ) implies that  $|\tilde{A}_1|$  is invertible. Consequently,  $\tilde{A}_1$  is left invertible, which (in turn) implies that  $A_1$  is left invertible. Hence  $\operatorname{ran} A_1$  is closed: a contradiction. A similar argument shows that  $\operatorname{ran} T_1$  is not closed implies that  $\operatorname{ran} A_1$  is not closed, and the proof is complete.

## 3. Applications

In this section we apply Theorem 1 to Weyl's theorem and the spectral continuity. In the following we assume (without explicitly saying so) that the corresponding results are known to hold for hyponormal operators. Let  $A \in \mathcal{H}(p)$  or  $\mathcal{L}$ , and let T be the associated hyponormal operator. It is then clear from Theorem 1 that

$$\sigma_w(A) = \sigma_w(T) = \sigma(T) - \sigma_{oo}(T) = \sigma(A) - \sigma_{oo}(A),$$

i.e., A satisfies Weyl's theorem. Again, if the function f is analytic on an open neighborhood of  $\sigma(A)$ , then

$$\sigma_w(f(A)) = \sigma(f(A)) - \sigma_{\circ \circ}(f(A)) = f(\sigma_w(A))$$

and f(A) satisfies Weyl's theorem. We have

COROLLARY 2.([4, 10]) If  $A \in \mathcal{H}(p)$  or  $\mathcal{L}$ , then A satisfies Weyl's theorem. Furthermore, if the function f is analytic on an open neighborhood of  $\sigma(A)$ , then f(A) satisfies Weyl's theorem.

Let  $P_1(A) = \{\lambda \in \mathbb{C} : A - \lambda \text{ is semi-Fredholm with } i(A - \lambda) \neq 0\}$ . Then since  $i(A - \lambda) = i(T - \lambda)$  for all  $\lambda \in \mathbb{C}$ , we have  $P_1(A) = P_1(T)$ .

Recall from [7] that the function " $\sigma$ " is continuous at the points  $B \in B(H)$  if and only if, for each  $\lambda \in \sigma(B) \setminus \overline{P_1(B)}$  and  $\epsilon > 0$ , the  $\epsilon$ -neighborhood of  $\lambda$  contains a component of

$$\sigma^{\circ}(B) = \sigma_{\circ \circ}(B) \cup [\sigma_{re}(B) \cap \sigma_{\ell e}(B)].$$

Let  $\lambda \in \sigma(A) \setminus \overline{P_1(A)} = \sigma(T) \setminus \overline{P_1(T)}$ . Since hyponormal operators are points of continuity of  $\sigma$  [14], given  $\epsilon > 0$  and  $\lambda \in \sigma(T) \setminus \overline{P_1(T)}$ , the  $\epsilon$ -neighborhood of  $\lambda$  contains a component of  $\sigma^{\circ}(T) = \sigma^{\circ}(A)$ . We have proved:

COROLLARY 3.([6, 8, 11, 13]) If  $A \in \mathcal{H}(p)$  or  $\mathcal{L}$ , then A is a point of continuity of  $\sigma$ .

More is true. The conclusion that A satisfies Weyl's theorem implies that  $\sigma_b(A) = \sigma_w(A)$  and that  $\sigma_{oo}(A)$  coincides with the set of normal eigenvalues, denoted  $\sigma_n(A)$ , of A. Hence

$$\sigma_{e}(A) \cap \overline{\sigma_{n}(A)} = \sigma_{e}(A) \cap \overline{\sigma_{\circ \circ}(A)}$$

$$\subseteq \sigma_{w}(A) \cap \overline{\sigma_{\circ \circ}(A)}$$

$$= (\sigma(A) \setminus \sigma_{\circ \circ}(A)) \cap \overline{\sigma_{\circ \circ}(A)}$$

$$\subset \Gamma_{\circ e}.$$

Since (already) A is a point of continuity of  $\sigma$ , [2, Theorem 14.17] implies the following

COROLLARY 4. If  $A \in \mathcal{H}(p)$  or  $\mathcal{L}$ , then A is a point of continuity of  $\sigma_e, \sigma_b, \sigma_w$ .

The operator  $B \in B(H)$  is said to satisfy a-Weyl's theorem if

$$\sigma_{\ell e}(B) = \sigma_a(B) \setminus \sigma_{\circ \circ}^a(B)$$
.

In general, it is true that

a-Weyl's theorem  $\implies$  Weyl's theorem.

Let  $A^* \in \mathcal{H}(p)$  or  $\mathcal{L}$ , and let  $T^*$  be the associated hyponormal operator. Then

$$\sigma_{\circ\circ}(A) = \sigma_{\circ\circ}^a(A) = \sigma_{\circ\circ}^a(T),$$

and

$$\sigma_{\ell e}(A) = \sigma_{re}(A^*)^* = \sigma_{re}(T^*)^* = \sigma_{\ell e}(T)$$
$$= \sigma_a(T) \setminus \sigma_{\circ \circ}^a(T) = \sigma_a(A) \setminus \sigma_{\circ \circ}^a(A).$$

Thus we have

COROLLARY 5.([6, 8, 11]) If  $A^* \in \mathcal{H}(p)$  or  $\mathcal{L}$ , then A satisfies a-Weyl's theorem. Furthermore, A is a point of continuity of  $\sigma_{\ell e}$ .

*Proof.* As already seen, A satisfies a-Weyl's theorem. Recall that hyponormal operators are points of continuity of  $\sigma_{\ell e}$ . Hence (see [2, Theorem 14.24])

- (i)  $\rho_{SF}^{-\infty}(T) = \text{interior}[\overline{\rho_{SF}^{-\infty}(T)}],$
- (ii)  $\sigma_e(T) = \text{boundary}(\rho_{SF}^{\pm}(T)) \cup \rho_{SF}^{\pm\infty}(T) \cup \overline{\Gamma_{\circ e}(T)}$
- (iii) if  $\lambda \in \sigma_{\ell re}(T)$  is an interior point of  $\overline{[\rho_{SF}^n(T)]}$  for some non-zero integer n, then  $\lambda \in \overline{\Gamma_{oe}(T)}$ . Since

$$\rho_{SF}^{\pm\infty}(T)=\rho_{SF}^{\pm\infty}(A),\ \rho_{SF}^{\pm}(T)=\rho_{SF}^{\pm}(A)\ \mathrm{and}\ \Gamma_{\circ e}(T)=\Gamma_{\circ e}(A),$$

conditions (i), (ii) and (iii) are satisfied with T replaced by A. Hence by [2, Theorem 14.24], A is a point of continuity of  $\sigma_{\ell e}$ .

ACKNOWLEDGEMENTS. It is our pleasure to thank the referee for his comments on an original version of this paper.

#### References

- [1] A. Aluthge, On p-hyponormal operators for 0 , Integral Equations Operator Theory 13 (1990), 307–315.
- [2] C. Apostol, Approximation of Hilbert space operators, Vol II, Research Notes in Mathematics 102, Pitman, 1984.
- [3] F. F. Bonsall and J. Duncan, *Complete normed algebras*, Ergebnisse der Math. Band 80, Springer-Verlag, 1973.
- [4] M. Chō, M. Itoh, and S. Ōshiro, Weyl's theorem holds for p-hyponormal operators, Glasg. Math. J. 39 (1997), 217-220.
- [5] M. Chō, I. H. Jeon, and J. I. Lee, Spectral and structural properties of loghyponormal operators, Glasg. Math. J. 42 (2000), 345-350.
- [6] M. Chō, I. S. Hwang, and J. I. Lee, On the spectral properties of log-hyponormal operators, preprint.
- [7] J. B. Conway and B. B. Morrel, Operators that are points of spectral continuity, Integr. Equat. Oper. Th. 4 (1981), 459-503.
- [8] S. V. Djordjević and B. P. Duggal, Weyl's theorems and continuity of spectra in the class of p-hyponormal operators, Studia Math. 143 (2000), 23-32.
- [9] B. P. Duggal, Quasi-similar p-hyponormal operators, Integral Equations Operator Theory 26 (1996), 338–345.
- [10] \_\_\_\_\_, The Weyl spectrum of p-hyponormal operators, Integral Equations Operator Theory 29 (1997), 197-201.
- [11] Y. M. Han and S. V. Djordjević, On a-Weyl's theorem II, preprint.
- [12] H. G. Heuser, Functional Analysis, John Wiley & Sons Ltd., 1982.
- [13] I. S. Hwang and W. Y. Lee, The spectrum is continuous on the set of p-hyponormal operators, Math. Z. 235 (2000), 151-157.
- [14] J. D. Newburgh, The variation of spectra, Duke Math. J. 18 (1951), 165-176.
- [15] K. K. Oberai, On the Weyl spectrum (II), Illinois J. Math. 21 (1977), 84-90.

- [16] K. Tanahashi, On log-hyponormal operators, Integral Equations Operator Theory 34 (1999), 364–372.
- [17] D. Xia, Spectral theory of hyponormal operators, Birkhäuser, Basel, 1983.
- [18] R. Yingbin and Y. Zikun, Spectral structure and subdecomposability of p-hyponormal operators, Proc. Amer. Math. Soc. 128 (1999), 2069-2074.

BHAGWATI P. DUGGAL, 8 REDWOOD GROVE, NORTHFIELDS AVENUE EALING, LONDON W5 4SZ, UNITED KINGDOM *E-mail*: bpduggal@yahoo.co.uk

IN HO JEON, DEPARTMENT OF MATHEMATICS, EWHA WOMEN'S UNIVERSITY, SEOUL 120-750, KOREA

E-mail: jih@math.ewha.ac.kr

Recent Address: Department of Mathematics, Seoul National University, Seoul 151-747, Korea