SOME PROPERTIES OF THE AP-DENJOY INTEGRAL

JAE MYUNG PARK, YOUNG KUK KIM, AND JU HAN YOON

ABSTRACT. In this paper, we define the ap-Denjoy integral and investigate some properties of the ap-Denjoy integral.

1. Introduction

For a measurable set E of real numbers, we denote by |E| its Lebesgue measure. Let E be a measurable set and let c be a real number. The density of E at c is defined by

$$d_c E = \lim_{h \to 0^+} \frac{\left| (E \cap (c-h, c+h) \right|}{2h} ,$$

provided the limit exists. The point c is called a *point of density* of E if $d_c E = 1$ and a *point of dispersion* of E if $d_c E = 0$. The set E^d represents the set of all points $x \in E$ such that x is a point of density of E.

A function $F:[a,b]\to\mathbb{R}$ is said to be approximately differentiable at $c\in[a,b]$ if there exists a measurable set $E\subseteq[a,b]$ such that $c\in E^d$ and $\lim_{\substack{x\to c\\x\in E}}\frac{F(x)-F(c)}{x-c}$ exists. The approximate derivative of F at c is denoted by $F'_{ap}(c)$.

An approximate neighborhood (or ap-nbd) of $x \in [a, b]$ is a measurable set $S_x \subseteq [a, b]$ containing x as a point of density. For every $x \in E \subseteq [a, b]$, choose an ap-nbd $S_x \subseteq [a, b]$ of x. Then we say that $S = \{S_x : x \in E\}$ is a choice on E. A tagged interval (x, [c, d]) is said to be subordinate to the choice $S = \{S_x\}$ if $c, d \in S_x$. Let $\mathcal{P} = \{(x_i, [c_i, d_i]) : 1 \le i \le n\}$ be a finite collection of non-overlapping tagged intervals. If $(x_i, [c_i, d_i])$ is subordinate to a choice S for each i, then we say that \mathcal{P} is subordinate

Received March 31, 2004. Revised March 10, 2005.

²⁰⁰⁰ Mathematics Subject Classification: 26A39.

Key words and phrases: ap-Denjoy integral, approximate Lusin function, approximately differentiable.

to S. If \mathcal{P} is subordinate to S and $[a,b] = \bigcup_{i=1}^{n} [c_i,d_i]$, then we say that \mathcal{P} is a tagged partition of [a,b] that is subordinate to S.

2. The ap-Denjoy and ap-Henstock integrals

We introduce the notion of the approximate Lusin function. This function is used to define the ap-Denjoy integral.

For a function $F:[a,b]\to\mathbb{R},\ F$ can be treated as a function of intervals by defining F([c,d])=F(d)-F(c).

DEFINITION 2.1. Let $F:[a,b]\to\mathbb{R}$ be a function. The function F is an approximate Lusin function(or F is an AL function) on [a,b] if for every measurable set $E\subseteq [a,b]$ of measure zero and for every $\varepsilon>0$ there exists a choice S on E such that $|(\mathcal{P})\sum F(I)|<\varepsilon$ for every finite collection \mathcal{P} of non-overlapping tagged intervals that is subordinate to S.

Recall that $F:[a,b]\to\mathbb{R}$ is AC_s on a measurable set $E\subseteq[a,b]$ if for each $\varepsilon>0$ there exist a positive number η and a choice S on E such that $|(\mathcal{P})\sum F(I)|<\varepsilon$ for every finite collection \mathcal{P} of non-overlapping tagged intervals that is subordinate to S and satisfies $(\mathcal{P})\sum |I|<\eta$. The function F is ACG_s on E if E can be expressed as a countable union of measurable sets on each of which F is AC_s .

LEMMA 2.2. If $F:[a,b]\to\mathbb{R}$ is ACG_s on [a,b], then F is an AL function on [a,b].

Proof. Suppose that $E \subseteq [a, b]$ is a measurable set of measure zero. Let $E = \bigcup_{n=1}^{\infty} E_n$, where $\{E_n\}$ is a sequence of disjoint measurable sets and F is AC_s on each E_n . Let $\varepsilon > 0$. For each n, there exist a choice $S^n = \{S_x^n : x \in E_n\}$ on E_n and a positive number η_n such that $|(\mathcal{P}) \sum F(I)| < \epsilon/2^n$ whenever \mathcal{P} is subordinate to S^n and $|(\mathcal{P}) \sum I| < \eta_n$. For each n, choose an open set O_n such that $E_n \subseteq O_n$ and $|O_n| < \eta_n$. Let $S_x = S_x^n \cap O_n$ for each $x \in E_n$. Then $S = \{S_x : x \in E\}$ is a choice on E. Suppose that \mathcal{P} is subordinate to S. Let \mathcal{P}_n be a subset of \mathcal{P} that has tags in E_n and note that $|(\mathcal{P}_n) \sum |I| < |O_n| < \eta_n$. Hence

$$\left| (\mathcal{P}) \sum F(I) \right| \le \sum_{n=1}^{\infty} \left| (\mathcal{P}_n) \sum F(I) \right| < \sum_{n=1}^{\infty} \frac{\epsilon}{2^n} = \epsilon.$$

DEFINITION 2.3. A function $f:[a,b] \to \mathbb{R}$ is ap-Denjoy integrable on [a,b] if there exists an AL function F on [a,b] such that F is approximately differentiable a.e. on [a,b] and $F'_{ap}=f$ a.e. on [a,b]. The

function f is ap-Denjoy integrable on a measurable set $E \subseteq [a, b]$ if $f\chi_E$ is ap-Denjoy integrable on [a, b].

If we add the condition F(a) = 0, then the function F is unique. We will denote this function F(x) by $(AD) \int_a^x f$.

It is easy to show that if $f:[a,b]\to\mathbb{R}$ is ap-Denjoy integrable on [a,b], then f is ap-Denjoy integrable on every subinterval of [a,b]. This gives rise to an interval function F such that $F(I)=(AD)\int_I f$ for every subinterval $I\subseteq [a,b]$. The function F is called the primitive of f.

Recall that $F:[a,b]\to\mathbb{R}$ is AC_* on a measurable set $E\subseteq[a,b]$ if for each $\varepsilon>0$ there exists $\delta>0$ such that $\sum_{i=1}^n\omega(F,[c_i,d_i])<\varepsilon$ whenever $\{[c_i,d_i]:1\leq i\leq n\}$ is a finite collection of non-overlapping intervals that have endpoints in E and satisfy $\sum_{i=1}^n(d_i-c_i)<\delta$, where $\omega(F,[c_i,d_i])=\sup\{|F(y)-F(x)|:c_i\leq x< y\leq d_i\}$. The function F is ACG_* on E if $F|_E$ is continuous on $E,E=\bigcup_{n=1}^\infty E_n$ and F is ACG_* on each E_n . It is easy to show that is F is ACG_* on [a,b], then F is ACG_s on [a,b]. A function $f:[a,b]\to\mathbb{R}$ is Denjoy integrable on [a,b] if there exists an ACG_* function $F:[a,b]\to\mathbb{R}$ such that F'=f almost everywhere on [a,b].

The following theorem shows that the ap-Denjoy integral is an extension of the Denjoy integral.

THEOREM 2.4. If $f:[a,b] \to \mathbb{R}$ is Denjoy integrable on [a,b], then f is ap-Denjoy integrable on [a,b].

Proof. Suppose that $f:[a,b] \to \mathbb{R}$ is Denjoy integrable on [a,b]. Then there exists an ACG_* function $F:[a,b] \to \mathbb{R}$ such that F'=f almost everywhere on [a,b]. Since F is ACG_s on [a,b], by Lemma 2.2 F is an AL function on [a,b] and $F'_{ap} = F' = f$ almost everywhere on [a,b]. Hence f is ap-Denjoy integrable on [a,b]

Recall that a function $f:[a,b]\to\mathbb{R}$ is ap-Henstock integrable on [a,b] if there exists a real number A with the following property; for each $\epsilon>0$ there exists a choice S on [a,b] such that $|(\mathcal{P})\sum f(x)|I|-A|<\epsilon$ whenever $\mathcal{P}=\{(x,I):x\in[a,b]\}$ is a tagged partition of [a,b] that is subordinate to S. A function $f:[a,b]\to\mathbb{R}$ is Khintchine integrable on [a,b] if there exists an ACG function $F:[a,b]\to\mathbb{R}$ such that $F'_{ap}=f$ a.e. [a,b].

There exists a function that is ap-Denjoy integrable on [a, b], but not Denjoy integrable on [a, b].

EXAMPLE 2.5. Let $\{(a_n, b_n)\}$ be a sequence of disjoint open intervals in (a, b) with the following properties:

- (1) $b_1 < b \text{ and } b_{n+1} < b_n \text{ for all } n;$
- (2) $\{a_n\}$ converges to a;
- (3) a is a point of dispersion of $O = \bigcup_{n=1}^{\infty} (a_n, b_n)$.

Define $F:[a,b]\to\mathbb{R}$ by F(x)=0 for all $x\in[a,b]-O$ and

$$F(x) = \sin^2\left(\frac{x - a_n}{b_n - a_n}\pi\right)$$

for $x \in (a_n, b_n)$. Then it is easy to show that F is approximately differentiable on [a, b]. It is well-known [4] that the approximate derivative F'_{ap} is ap-Henstock integrable but not Khintchine integrable on [a, b]. By [4, Lemma 16.17 and Theorem 16.18], F is an AL function and hence F'_{ap} is ap-Denjoy integrable on [a, b]. But F'_{ap} is not Denjoy integrable on [a, b], since every Denjoy integrable function is Khintchine integrable.

THEOREM 2.6. Let $f:[a,b]\to\mathbb{R}$ be ap-Denjoy integrable on [a,b] and let $F(x)=(AD)\int_a^x f$ for each $x\in[a,b]$. Then

- (a) the function F is approximately differentiable a.e. on [a,b] and $F'_{ap} = f$ a.e. on [a,b]; and
- (b) the functions F and f are measurable.

Proof. (a) follows from the definition of the ap-Denjoy integral. Since F is approximately continuous a.e. on [a,b], F is measurable by [4, Theorem 14.7]. It follows from [4, Theorem 14.12] that f is measurable. \Box

THEOREM 2.7. Let $F:[a,b] \to \mathbb{R}$ be an AL function on [a,b]. If F is approximately differentiable a.e. on [a,b], then F'_{ap} is ap-Denjoy integrable on [a,b] and $(AD) \int_a^x F'_{ap} = F(x) - F(a)$ for each $x \in [a,b]$.

Proof. Suppose that F is an AL function on [a,b] and F is approximately differentiable a.e. on [a,b]. Then for every constant C, F+C is also an AL function on [a,b], approximately differentiable a.e. on [a,b] and $(F+C)'_{ap}=F'_{ap}$ a.e. on [a,b]. Hence F'_{ap} is ap-Denjoy integrable on [a,b] and

$$F(x) + C = (AD) \int_{a}^{x} F'_{ap}$$
 for each $x \in [a, b]$.

Since F(a) + C = 0, C = -F(a) and

$$(AD) \int_{a}^{x} F'_{ap} = F(x) - F(a) \quad \text{for each } x \in [a, b].$$

We can easily show that if f is ap-Denjoy integrable on each of intervals [a, c] and [c, b], then f is ap-Denjoy integrable on [a, b] and

$$(AD)\int_a^b f = (AD)\int_a^c f + (AD)\int_c^b f.$$

THEOREM 2.8. Suppose that $f:[a,b]\to\mathbb{R}$ is ap-Denjoy integrable on each subinterval $[c,d]\subseteq (a,b)$. If $(AD)\int_c^d f$ converges to a finite limit as $c\to a^+$ and $d\to b^-$, then f is ap-Denjoy integrable on [a,b] and $(AD)\int_a^b f=\lim_{\substack{c\to a^+\\d\to b^-}} (AD)\int_c^d f$.

Proof. Choose a point $p \in (a, b)$ and fix it. First, we will prove that if f is ap-Denjoy integrable on [p, d] for each $d \in (p, b)$ and $(AD) \int_p^d f$ converges to a finite limit as $d \to b^-$, then f is ap-Denjoy integrable on [p, b] and $(AD) \int_p^b f = \lim_{d \to b^-} (AD) \int_p^d f$.

Let $L = \lim_{d\to b^-} (AD) \int_p^d f$, let $a_0 = p$ and $\{a_k\}$ be an increasing sequence in (p,b) that converges to b. Define a function $F:[p,b]\to \mathbb{R}$ by

$$F(x) = F_i(x)$$
 if $x \in [a_{i-1}, a_i]$ for each $i = 1, 2, 3, \cdots$

and F(b) = L, where F_i is the primitive of f on $[a_{i-1}, a_i]$ and $F_i(a_{i-1}) = 0$ for each i. Since each F_i is an AL function on $[a_{i-1}, a_i]$ such that F_i is approximately differentiable a.e. on $[a_{i-1}, a_i]$ and $(F_i)'_{ap} = f$ a.e. on $[a_{i-1}, a_i]$, the function F is an AL function on [p, b] such that F is approximately differentiable a.e. on [p, b] and $F'_{ap} = f$ a.e. on [p, b]. Hence, f is ap-Denjoy integrable on [p, b] and

$$(AD) \int_{p}^{b} f = F(b) = L = \lim_{d \to b^{-}} (AD) \int_{p}^{d} f.$$

Similarly, we can prove that if f is ap-Denjoy integrable on [c, p] for each $c \in (a, p)$ and $(AD) \int_c^p f$ converges to a finite limit as $c \to a^+$, then f is ap-Denjoy integrable on [a, p] and $(AD) \int_a^p f = \lim_{c \to a^+} (AD) \int_c^p f$.

If $(AD) \int_c^d f$ converges to a finite limit as $c \to a^+$ and $d \to b^-$, then for any $p \in (a,b)$ $(AD) \int_c^p f$ converges to a finite limit as $c \to a^+$ and $(AD) \int_p^d f$ converges to a finite limit as $d \to b^-$. By the proof of the

previous parts, f is ap-Denjoy integrable on $[a, p] \cup [p, b] = [a, b]$ and

$$(AD) \int_{a}^{b} f = (AD) \int_{a}^{p} f + (AD) \int_{p}^{b} f$$

$$= \lim_{c \to a^{+}} (AD) \int_{c}^{p} f + \lim_{d \to b^{-}} (AD) \int_{p}^{d} f$$

$$= \lim_{\substack{c \to a^{+} \\ d \to b^{-}}} (AD) \int_{c}^{d} f.$$

References

- [1] P. S. Bullen, *The Burkill approximately continuous integral*, J. Aust. Math. Soc. (Series A) **35** (1983), 236–253.
- [2] T. S. Chew and Kecheng Liao, The descriptive definitions and properties of the AP-integral and their application to the problem of controlled convergence, Real Anal. Exchange 19 (1993–1994), 81–97.
- [3] R. A. Gordon, Some comments on the McShane and Henstock integrals, Real Anal. Exchange 23 (1997–1998), 329–342.
- [4] _____, The Integrals of Lebesgue, Denjoy, Perron and Henstock, Amer. Math. Soc. Providence, R.I. 1994.
- [5] J. Kurzweil, On multiplication of Perron integrable functions, Czechoslovak Math. J. 23 (1973), no. 98, 542-566.
- [6] J. Kurzweil and J. Jarnik, Perron type integration on n-dimensional intervals as an extension of integration of step functions by strong equiconvergence, Czechoslovak Math. J. 46 (1996), no. 121, 1-20.
- [7] T. Y. Lee, On a generalized dominated convergence theorem for the AP integral, Real Anal. Exchange 20 (1994-1995), 77-88.
- [8] K. Liao, On the descriptive definition of the Burkill approximately continuous integral, Real Anal. Exchange 18 (1992–1993), 253–260.
- Y. J. Lin, On the equivalence of four convergence theorems for the AP-integral, Real Anal. Exchange 19 (1993-1994), 155-164.
- [10] J. M. Park, Bounded convergence theorem and integral operator for operator valued measures, Czechoslovak Math. J. 47 (1997), no. 122, 425-430.
- [11] _____, The Denjoy extension of the Riemann and McShane integrals, Czechoslovak Math. J. **50** (2000), no. 125, 615–625.
- [12] J. M. Park, C. G. Park, J. B. Kim, D. H. Lee and W. Y. Lee, *The integrals of s-Perron, sap-Perron and ap-McShane*, Czechoslovak Math. J. **54** (2004), no. 129, 545–557.
- [13] A.M. Russell, A Banach space of functions of generalized variation, Bull. Austral. Math. Soc. 15 (1976), 431–438.
- [14] ______, Stieltjes type integrals, J. Aust. Math. Soc. (Series A) 20 (1975), 431–448.

JAE MYUNG PARK, DEPARTMENT OF MATHEMATICS, CHUNGNAM NATIONAL UNIVERSITY, DAEJEON 305-764, KOREA *E-mail*: jmpark@math.cnu.ac.kr

YOUNG KUK KIM, DEPARTMENT OF MATHEMATICS EDUCATION, SEOWON UNIVERSITY, CHUNGJU 361-742, KOREA *E-mail*: ykkim@dragon.seowon.ac.kr

Ju Han Yoon, Department of Mathematics Education, Chungbuk National University, Chungju 360-763, Korea *E-mail*: yoonjh@cbucc.chungbuk.ac.kr