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REMARKS ON THE MINIMIZER
OF A p-GINZBURG-LANDAU TYPE

YUuTIAN LEI

ABSTRACT. The author studies the asymptotic behavior of the ra-
dial minimizer for a variant of the p-Ginzburg-Landau type func-
tional, in the case of p larger than the dimension, when the param-
eter tends to zero. The C'® convergence of the radial minimizer is
proved. And the estimation of the convergent rate of the minimizer
is given.

1. Introduction

Let G C R*(n > 2) be a bounded and simply connected domain
with smooth boundary 8G. g(z) : 8G — S! is smooth map satisfying
d = deg(g,0G). When n = 2, many papers studied the asymptotic
behavior of minimizer u. of the Ginzburg-Landau functional

1 1
Blw) =5 /G Vulde+ o7 [ (1= e

on Hg(G, R?) as ¢ — 0. In particular, some subsequence ue, of the
minimizer u,. satisfies
(1.1) klim Ue, = U 0 CRY(G\ A),

—00
where o € (0,1), u, is a harmonic map (see [1]). Here A is the set of
the singularities of u.. The papers [2] and [5] presented the properties
of the radial minimizer of E!(u) in the function class

v = {u) = 10

x

& HNB,RY; S =1, 7 = al}.
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where B = {z € R?;|z| < 1}. The asymptotic behavior of the minimizer
in H ;(G’ , R?) of the Ginzburg-Landau type functional

E2(u) = /qu(2da:+4 2/ lul>(1 — |u|?)2dz,

with the different penalization, was discussed extensively in [3]. The
same result as (1.1) was also derived. Afterwards, it is researched as-
ymptotic properties of the radial minimizer of

E.(u,B) / |Vu]pd:1:+ / [ul2(1 — |u*)?dz, (p>n)

in W = {u(z) = f(r)& € WI(B,R"; f(1) = Lr = |af}, where
B = {z € R™;|z| < 1}. The following properties have been proved (see
Theorems 3.6 and 4.3 in [4]):

The radial minimizer u, is unique as long as ¢ is

(1.2) sufficiently small,
and the convergence which is weaker than (1.1)
(1.3) Ue — % in WAP(B\{0}) as e—0.

In this paper, we will prove that the radial minimizer of E.(u, B)
also satisfies the convergent property as (1.1). To do this, the C1¢
uniform estimation of the minimizer u. should be obtained. Indeed,
it is difficult since the Euler-Lagrange equation, which the minimizer
satisfies, is degenerate when p > 2. There may not be any classical
solution to the equation. Hereby, we consider the regularized functional

E7(u, B) / (IVul?+7) p/zdm+— / w2(1— [ul?)2ds, (r € (0,1)).

It is easy to see that the minimizer u](z) = f7 (r)ri—l exists in W. By
the argument of the weak low semi-continuity we can deduce that

1.4 limul =@ in WDHP(B,R"),
7—0 €

where . is a radial minimizer of E,(u, B) in W. Noticing (1.2), we know
that as ¢ is sufficiently small, the limit %, must be the unique radial
minimizer u.. Hence, we may derive the C1® convergence of the radial
minimizer via establishing the C1® estimation of u7 (see Theorem 2.2).
In addition, we also concern with the convergent rate of |u;|] — 1 in
WLP(B\ {0}) when s — 0. In fact, if T > 0, we can obtain firstly that
E.(ue, B\ Br(0)) — fB\BT 0) |V Ilpd:c < Ce[p]"pH (cf. Theorem 3.1).
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Next, by improving the exponent [p] — p + 1 of € step by step, we can
see at last the convergent rate in WLP([T, 1]):

/ P + (1= 2 < O
T ep
where f.(r) = |ue(z)| (cf. Theorem 3.2).

2. C1® convergence

Since u7 is a minimizer, it is not difficult to see that fI = |u| solves

(1) - (ra®dy) +

n—1

ACD/Tf = rf (42 -3 - 1),

and |f7| < 1in [0, 1] by the maximum principle, where A = f? +(1_7§)Lz+
7. By the same argument of (3.8) and (4.2) in [4], we also see that for
any T > 0, there exists C > 0 which is independent of ¢ and 7, such
that

(2.2) |f£1>29/30 in [T,1],
1
(2.3) / AP2gr < C.
T

PROPOSITION 2.1. Denote ul = u = f(r)%. Then for any compact

: Bl
subset K C (0,1], there exists a positive constant C' which does not
depend on € and 7, such that ||f|lcuek,r) < C, VB € (0,1/2).

Proof. Take T > 0 so small that Ksr CC K CC Kyr C K =
(T,1 - T). Let ¢ € C°(Kr,[0,1]) satisfy that ¢ = 0 on [0,1] \ KT,
¢ =1 on Kor, and |¢;| < C(T) on (0,1). Multiplying (2.1) with r~1
and differentiating, then multiplying by f.¢? and integrating on (0, 1),
we have

[ lm) ere [[(earon) uen

+(n—1) /01 (r—zA(p—2)/2f)T (£.¢?) dr

1 1
~ 2 J,

Integrating by parts and noting
1
o | PO G2 - <o,
Kr

[f (4f? = 3f* = 1)],. (f¢?) dr.

2eP
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we get
/ (Ae%zfr) (5:¢2),dr+ [ AS (£.07), [ﬁ_ (n —21)f ] dr
Kr r Ky r T
1
<57 e (4f% — 374 — 1) f2¢2dr.
Denote
I= 2 [ g(p-2)/2 f2 _nAP-D/2¢2¢2 4
[ (AP A o= 2A 2 2 ar
Noting

Ar =2 [fefor + (0= D(F frr™? =707,
and using Young inequality, we see that for any & € (0, 1),

I<8I+C66,T) [ AP?dr

(2.4) Kr

1 2442 _aph _ 1)2
+ e /K § fRAf? =3 = 1)Pdr
From (2.1) and (2.2) and by Young inequality, it follows
/ (4f% = 3f4 — 1) f2C%r| < 6T + C(, T)/ A@+2/202q,
Kr Kr

with ¢ € (0,1). Substituting this into (2.4) and choosing § sufficiently
small, we have

1
2eP

(2.5) I<C Amg,?dr +C AP+2)/2 dr.
KT KT

To estimate the second term of the right hand side, we take ¢ =
¢2/95#*t/% iy the embedding inequality

(2.6) I6llze < Cllenl s NB14, g+ ;2, 2).

Applying Young inequality we see that for any 6 € (0,1),

/ f£)+242dr <C (/ CZ/qlfrl(p+2)/da)
Kr Ky

(2.7 X (/K ¢Ha1\¢ || £, PHR /e

Pt2_p 7-1
+514+0(5) | A% 244/q‘2dr> |
KT
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Noting ¢ € (1 + %, 2), we can use the Holder inequality to estimate

the right hand side of (2.7). Thus, from (2.3) it leads to f,  f¥ +2024r <
dI + C(0) for any & € (0,1). Substituting this into (2.5) and choosing
d sufficiently small, we obtain [y AP=2)/2f2 24 < C. Combining this
with (2.3), we get ||A7’/4C[|H1(KT) < C. Noticing that ( = 1 on K, we
see that || AP/4|| a1 (k) < C. Applying the embedding inequality, we know
that for any 8 < 1/2, ||A?/ 4”05( k) < C. The inner estimation is set up.

In the following, we consider the estimation near the boundary point
r = 1. Denote g(r) = f(r+1) — 1. Set g(r) = g(r) as -1 < r <0,
g(r) = —g(-r) as 0 < r < 1. If denote f(r) = g(r — 1)+ 1 in [0,2],
then f(r) solves (2.1) in [0,2]. Take R < 3. Assume that ¢ € C>(0,1]
satisfies ( =1 when r > 1 — R; ( = 0 when r < 2R. Differentiating (2.1)
and multiplying by f-¢?, then integrating on [R, 1], we have

_ /1 (A(p—2)/2fr)rr (frC2) dr — /Rl (T—IA(p-Q)/Zfr)r (frC2)dr

R
+(n-1) / 1 (r2a0-27%) (5:ir
R T

1
_L [~ AR 1)), (D).

eb

Integrating by parts leads to

[ (49728 (1,63,

R

N /1 A(p—z)/Z(fT@)r [7'~1fr _ (n _ l)r_zf] dr
R

1
<2 [ a-mee- 1) f2¢%dr

ep R
1
-5 [ P2 =8+ 1) - 1),
R

where I(r) = (A(p_z)/2f7')r+%A(p-2)/2fr—(n—l);‘lgA(p_z)/Zf]fr<2. From
(2.1) it follows that I(r) = -1 f(f2 - 1)(3f2 — 1) £-¢%. Noting f(1) =1
and ((R) = 0, we obtain I(1) = I(R) = 0. Substituting this into the
inequality above, and by the same argument as the inner estimation,
we also derive (2.5). Now, take ¢ = (¢%/9 f,gp *2/9 i1 the embedding
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inequality

I8lle < CUbellz + bl aB1%e, g1+ 32)

instead of (2.6) (in fact, (2.6) is not valid since ¢ # 0 near r» = 1). Thus,
(2.7) can be still derived. The rest proof is same as the proof of the
inner estimation.

THEOREM 2.2. Let u, = fs(r)l—z—| be a radial minimizer of E,(u, B).

Then for any compact subset K C B\{0}, lim._o u. = ﬁ inCH*(K, R™)
for all o € (0,1/2).

Proof. For any compact subset K C B\ {0}, by using Proposition
2.1 we know that for some 8 € (0,1/2),

(2.8) lugllcrer) < C = C(K)

with C' > 0 independent of €, 7. From this and the embedding theorem,
we see that for some 8; < B3, there exist w* € C1# (K, R") and a
subsequence 7 of 7, such that as k — oo,

(2.9) ul* —w? in CY(K,RM).

Combining this with (1.4) and (1.2), we have w} = u,.

Applying (2.8) and the embedding theorem again, we know that for
some (2 < (3, there exist w* € Cl’ﬁ'z(K , R™) and a subsequence 7, of 7%,
such that as m — oo,

(2.10) ul™ —w* in CH2(K,R").

E€m

Set o = min(f;,B2). Thus, when m — oo, using (2.9)-and (2.10) we
obtain

e — w*llcre(k,mm)
(2.11) < Nten — uimllcram,rry + llugr — w*llore i, mmy
< o(1),

which, together with (1.3), implies w* = Ii_l Noting the uniqueness of
the limit %, we deduce that the convergence (2.11) holds not only for
the subsequence, but also for the whole wu,.
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3. Analysis of the convergent rate

From (4.2) in [4], It was led to, for any compact subset of K C (0, 1],
the convergent rate
1

(3.1) v

(1—f€) "~ldr < C.

In this section, we shall present the better rate.

THEOREM 3.1. Let u.(z) = fe(r )r- be a radial minimizer of E,(u, B).

Then for any T > 0, there exists a constant C > 0 which is independent
of €, such that as e — 0,

1 1
62 [ 5 [ R0 2petar s odie,
T eP Jr

1 1
1 / VP + e (1 — g [2)2
P JB\B1(0) 4¢P Jp\B1(0)
(3.3)
1 T
— = —P.

pJB\Br(0) |2l
Proof. From [4,Theorem 4.2] it follows that
1 1
(3-4) E(f;T) < 1;/ (n — 1)P/2en=P=1gp | Celpl-p+1,
T

Here E (f;T) =1 fT | frlPrm—ldr + 2L fT F2(1 = 22" 1dr. On the
other hand, Jensen s inequality with p > 2 implies that

1 /! f2 p/2 _
E (f;T | FL[Prm— ldr + = ((n— 1)= ) rldr
(35) / / e

+@;/T £2(1-f2)%rmdp,

Combining this with (3.4) yields
1 /1 72 P2
5/:/“ ((n—l)r—§> " Ldp
(3.6) < E(fsT)

1
< Celrl-p+1 4 l/ (n — 1)P/2p7—P=1gp.
pJr
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By using (3.1) and Holder inequality we deduce

1
/ (n — 1)P/2Fn=P=1(1 = fPYdr < CeP/2.
T
Substituting this into (3.6) leads to

1
T

Noticing fB\BT(O) |V & [Pdz = |S™1 fjl,((n—l)r_z)p/zr"‘ldr, from (3.5)
and (3.7), we can obtain (3.2) and (3.3).

THEOREM 3.2. Let u.(x) = fe(r )I””| be a radial minimizer of E,(u, B).

Then for any T > 0, there exists C > 0 which is independent of ¢, such
that [ " L [(f1)P + L (1 — f2)2]dr < CeP.

Proof. From Jensen’s inequality and (2.2) it follows

E(fsT) 2 11)/ (foPrm- 1dr+~1—/1( — 2% ldr

8P
1! (n— 1)1’/2 I
o
Combining this with (3.4) and using (3.1), we have
1
(3.8) ;/ (FPr~ldr + 811’ (1 — )%™ tdr < Celrl-p1,

Noting (3.4) and (3.8), and applying the integral mean value theorem,
we see that there exists 77 € [T, 2T, such that

(3.9) [i (1- ff)z] < Crelfl-r+1,
P r=T1
Clearly, we may find a minimizer p; in W’ PP((Ty, 1), RT U{0}) of the
functional

1 1 1 1 .
E(p,Ty) = = 2 4 1)P/2q —/ 1— p)3dr.
ey = [ triptars o [0 -pfar

PROPOSITION 3.3. (3.9) implies that E(py, T1) < CeFlll. Here F[j]
Pl +1-p (21—1)p i=0.1.
2 27
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Proof. The minimizer p; solves the problem

(3.10) —P(PD/2p), =1—-p on [T1,1],

(3.11) p(Th) = fe(T1), p(1)= fe(l)‘: 1,

where v = p2 + 1. Obviously, p < 1. Noting that p; is a minimizer, we
deduce from (3.8) in [4] and (3.4) that

(3.12) E(p1,T1) < E(fe,T1) < CEc(fe;Th) < C.

Take ¢ € C*(0,1], { =1 on (0,71], ¢ =0 near r = 1, and |{,;| < C(T1).
Multiplying (3.10) with (p, and integrating over [T}, 1], we have

. 1
v(p—2)/2p% T +/ v(p~2)/2pr(CrPr + Cprr)dr
r=4i1

T
(3.13) 11 )
=3 T1(1 — p)Cpydr.

At first, by using (3.12) we obtain
(3.14)

1
/T v(p—Q)/Qpr (Grpr + Cppr)dr
1

1 1
< / v(p—z)/zKri(pr)del‘ / [(v-2/2¢) —-272¢,) ar
pPiJn T

T

<C+ l'01"/2
p r=T1

Next, by applying (3.12), (3.11), and (3.9), we derive

1
(1 - P)C,OrdT
T

b
1 1
(3.15) = oep /T (1 - p)%)r — (1 - p)%¢,] dr
1 1
< 5};(1 — P)2 o + ﬁ Tl(l _ p)2dr
<C.

Combining (3.13)-(3.15), we get v®=2/2p2| 5, < C + %Up/2|r=Tl.
Substituting this into v?/2|,—q, = v®~2/2(p2+1)|,=1,, and using Young
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inequality, we see that for any 6 € (0,1/2), v"/?|,—, < C(8) + (% +

8)vP/?|,_1,. Choosing ¢ sufficiently small yields

(3.16) vP/2 <C.

r=T1

Multiplying (3.10) with (p — 1) and integrating over [T}, 1], we have
1

1 1
/ [v-2729, (- 1)] ar = / o022 4 L / (p—1)2dr.
T r T & Jn

Hence, by applying (3.16), (3.11), and (3.9), we obtain
1

T

E(p1,T1)<C

= CuP D, |-y
r=T

< e,
Proposition is proved.

PROPOSITION 3.4. Proposition 3.3 implies that

1(n —1)P/2
EE(.fs§T1) < CgF[l] + 1/ _(_TL__Ld,r
rJmn

rp—n+l

Proof. Set w, = f if r € [0,T1], we = p1 if 7 € [T1, 1]. Noticing that
Ue is a minimizer, we have E.(u., B) < EE(wET;i‘, B). Hence

1 ! n—1 ,\"?
Ee(fsaTl)SE‘/ (P$+ 2 P2) rldr

7
1 1 2 2
i 1— 2 'n—ld
+4€p Tlp (1-p%)" " tadr
1 (1 n—1,\"?
< 5/ ( 2 pz) ™ ldr + CE(p1, Th).
T1

Proposition 3.4 is seen by using Proposition 3.3.
. Complete the proof of Theorem 3.2. Using Proposition 3.4 and (3.1), we
can deduce that

1 1

/ (fPrntdr + 1 (1 — 2% ldr < CeFIM 4 CeP/? < Oy
T 8eP J1y

by the same derivation of (3.8). Comparing with (3.8), we find the rate

is better than (3.8), since the exponent of ¢ is improved from F[0] to
F1]. :
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Set Ty, € [Tim—1,2T]. By the same argument above (whose idea is
improving the exponent of ¢ from F[k] to F[k + 1]), we know that there
exists a sufficiently large integer m satisfying § + 1 < F[m], such that

1
[ wprare s [ - ppear
m Tm

< CeFtml 4 CeP/?
< CePl2,

(3.17)

Similar to the derivations of (3.9), we see that there exists Tin41 €
[Ton, 2T such that

(3.18) [l (1- }3)2} < Ce??,

P
=4im+1

Obviously, the minimizer ps € W}E’p ((T1,1), RT) of

1 1 1 1
E(p,T, =—/ 2+1”/2dr+—/ 1— p)%dr
(0 Tn1) = - Tmﬂ(pr ) 5ep Tm+1( p)
exists. By the analogous proof of Proposition 3.3, form (3.18) we can
also obtain that
< C(1 = pa(Tim1)) < Ce,

"'=Tm+l

-2
E(p2, Trnt1) < 02 par(1— p1)

where G[j] = p/2 & 1)p,j =m+1,m+2,---. So, by the same proof
of Proposition 3 4 we also conclude that

—1)p/?

1
Es(fe:;Tm—H) < CEGD] + 1/ (n——dr.
p Tm+1

rp—1
Similar to the derivation of (3.8), using (3.17) we have
1 1 1
/ (fPrmldr + — (1— A% lar < CeCll.
Tm+1 8eP Tt

By the same argument above (whose idea is improving the exponent
of € from Glk] to G[k + 1]), we know that for any k € N,

1 ! 2, (2F-1
‘/ far=har + L/ (1— %" tdr < Ce B+ EFE
8eP Tk

Tm+k

Letting kK — oo, we can see the conclusion of Theorem.
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