DOI QR코드

DOI QR Code

식생된 개수로 흐름에서의 난류의 비등방성

Anisotropy of Turbulence in Vegetated Open-Channel Flows

  • 강형식 (연세대학교 사회환경시스템공학부) ;
  • 최성욱 (연세대학교 사회환경시스템공학부)
  • Kang, Hyeong-Sik (School of Civil & Environmental Engineering, Yonsei University) ;
  • Choi, Sung-Uk (School of Civil & Environmental Engineering, Yonsei University)
  • 발행 : 2005.10.01

초록

본 논문은 식생된 개수로 흐름에서 난류의 비등방성이 평균유속 및 난류구조에 미치는 영향을 파악하기 위한 수치모의 연구이다. 비등방성 난류모형인 레이놀즈응력모형을 이용하여 식생이 없는 일반 개수로 흐름과 침수 및 정수식생된 개수로 흐름에서의 평균유속 및 난류구조를 수치모의하였다. 수치모의 결과를 기존의 실험결과 및 k-$\epsilon$ 모형과 응력대수식모형에 의한 계산 결과와 비교하였다. 식생이 없는 일반 개수로 흐름과 정수식생된 개수로 흐름에서의 평균유속과 레이놀즈응력을 계산한 결과 등방성 및 비등방성 난류모형에 의한 해석 결과의 차이가 거의 나타나지 않았다. 즉, 난류의 비등방성의 영향이 매우 작은 것으로 나타났다. 그러나 자유수면 및 바닥 근처에서 발생되는 난류의 감쇠효과에 의한 난류의 비등방성은 레이놀즈응력이 가장 잘 예측하는 것으로 나타났다. 침수식생된 개수로 흐름의 경우 식생높이 부근에서 난류의 비등방성이 강하게 발생하는 것으로 나타났다. 계산된 평균유속 및 난류구조는 레이놀즈응력모형이 다른 모형 보다 가장 정확한 예측을 수행하였으며, 등방성 모형인 k-$\epsilon$ 모형은 식생높이 보다 높은 영역에서 평균유속 및 난류강도를 각각 과대 및 과소 예측하는 것으로 나타났다. 또한 계산된 결과를 이용하여 식생된 개수로 흐름에서의 부유사량을 산정한 결과 등방성 난류모형이 부유사량을 과소 산정하는 것으로 나타났다.

This paper investigates the impacts of turbulent anisotropy on the mean flow and turbulence structures in vegetated open-channel flows. The Reynolds stress model, which is an anisotropic turbulence model, is used for the turbulence closure. Plain open-channel flows and vegetated flows with emergent and submerged plants are simulated. Computed profiles of the mean velocity and turbulence structures are compared with measured data available in the literature. Comparisons are also made with the predictions by the k-$\epsilon$ model and by the algebraic stress model. For plain open-channel flows and open-channel flows with emergent vegetation, the mean velocity and Reynolds stress profiles by isotropic and anisotropic turbulence models were hardly distinguished and they agreed well with measured data. This means that the mean flow and Reynolds stress is hardly affected by anisotropy of turbulence. However, anisotropy of turbulence due to the damping effect near the bottom and free surface is successfully simulated only by the Reynolds stress model. In open-channel flows with submerged vegetation, anisotropy of turbulence is strengthenednear the vegetation height. The Reynolds stress model predicts the mean velocity and turbulence intensity better than the algebraic stress model or the k-$\epsilon$ model. However, above the vegetation height, the k-$\epsilon$ model overestimates the mean velocity and underestimates turbulence intensity Sediment transport capacity of vegetated open-channel flows is also investigated by using the computed profiles. It is shown that the isotropic turbulence model underestimates seriously suspended load.

키워드

참고문헌

  1. 강형식, 최성욱 (2002). '개수로 흐름에서 레이놀즈응력 모형의 비교.' 대한토목학회논문집, 22(1-B), 21-32
  2. Burke, R.W. and Stolzenbach, K.D. (1983). 'Free surface flow through salt marsh grass.' MIT-Sea Grant Report MITSG 83-16, Massachusetts Institute of Technology, Cambridge, Mass
  3. Cokljat, D. and Younis, B.A. (1995a). 'Second-order closure study of open-channel flows.' Journal of Hydraulic Engineering, ASCE, 121(2), 94-107 https://doi.org/10.1061/(ASCE)0733-9429(1995)121:2(94)
  4. Demuran, A.O. and Rodi, W. (1984). 'Calculation of turbulence driven secondary motion on non circular ducts.' Journal of Fluid Mechanics, 140, 189-222 https://doi.org/10.1017/S0022112084000574
  5. Dunn, C.J. (1996). Experimental determination of drag coefficients in open channel with simulated vegetation, M.S. Thesis, University of Illinois at Urbana-Champaign, Urbana, IL
  6. Garcia, M. (1999). 'Sedimentation and erosion hydraulics.' Mays, L.W. (Ed.), Hydraulic Design Handbook, McGraw-Hill, 6.1-6.113
  7. Garcia, M. and Parker, G. (1991). 'Entrainment of bed sediment into suspension.' Journal of Hydraulic Engineering, ASCE, 117(4), 414-435 https://doi.org/10.1061/(ASCE)0733-9429(1991)117:4(414)
  8. Gibson, M.M. and Launder, B.E. (1978). 'Ground effects on pressure fluctuations in the atmospheric boundary layer.' Journal of Fluid Mechanics, 86, 491-511 https://doi.org/10.1017/S0022112078001251
  9. Hanjalic, K. and Launder, B.E. (1972). 'A Reynolds stress model of turbulence and its application to thin shear flows.' Journal of Fluid Mechanics, 52, 609-638 https://doi.org/10.1017/S002211207200268X
  10. Launder, B.E., Reece, G.J., and Radi, W. (1975). 'Progress in the development of Reynolds stress turbulence closure.' Journal of Fluid Mechanics, 63(3), 537-566 https://doi.org/10.1017/S0022112075001814
  11. Lopez, F. and Garcia, M. (1997). 'Open-channel flow through simulated vegetation: Turbulence modeling and sediment transport.' Wetlands Res. Program Tech Rep. WRP-CP-10, Waterw. Exp. Stn., Vicksburg, MS
  12. Lopez, F. and Garcia, M. (1998). 'Open-channel flow through simulated vegetation: Suspended sediment transport modeling.' Water Resource Research, AGU, 34(9), 2341-2352 https://doi.org/10.1029/98WR01922
  13. Mellor, G.L. and Herring, H.J. (1973). 'A survey of mean turbulent field closure.' AIAA Journal, 11, 590-599 https://doi.org/10.2514/3.6803
  14. Naot, D. and Rodi, W. (1982). 'Calculation of secondary currents in channel flow.' Journal of the Hydraulics Division, ASCE, 108(HY8), 948-968
  15. Neary, V.S. (2003). 'Numerical solution of fully developed flow with vegetative resistance.' Journal of Engineering Mechanics, ASCE, 129(5), 558-563 https://doi.org/10.1061/(ASCE)0733-9399(2003)129:5(558)
  16. Nepf, H.M. (1999). 'Drag, turbulence, and diffusion in flow through emergent vegetation.' Water Resources Research, AGU, 35(2), 479-489 https://doi.org/10.1029/1998WR900069
  17. Nepf, H.M. and Vivoni, E.R. (2000). 'Flow structure in depth-limited, vegetated flow.' Journal of Geophysical Research, AGU, 105(12), 547-557 https://doi.org/10.1029/2000JC900111
  18. Nezu, I. and Nakayama, T. (1999). 'Numerical calculation of steep open-channel flows by considering effects of surface wave fluctuations.' International Conference of WEESH, Seoul, Korea
  19. Rodi, W. (1976). ' A new algebraic relation of calculating the Reynolds stresses.' ZAMM, 56, 219-221 https://doi.org/10.1002/zamm.19760560510
  20. Shimizu, Y. and Tsujimoto, T. (1994). 'Numerical analysis of turbulent open-channel flow over a vegetation layer using a $k-{\varepsilon}$ turbulence model.' Journal of Hydroscience and Hydraulic Engineering, JSCE, 11(2), 57-67
  21. Shir, C.C. (1973). 'A preliminary numerical study of atmospheric turbulent flow in the idealized planetary boundary layer.' Journal of Atmospheric Science, 30, 1327-1339 https://doi.org/10.1175/1520-0469(1973)030<1327:APNSOA>2.0.CO;2
  22. Speziale, C.G., Sarkar, S., and Gatski, T. (1991). 'Modeling the pressure strain correlation of turbulence: an invariant dynamical systems approach.' Journal of Fluid Mechanics, 227, 245-272 https://doi.org/10.1017/S0022112091000101
  23. Tollner, E.W., Barfield, B.J., and Hayes, J.C. (1982). 'Sedimentology of erect vertical filters.' Journal of the Hydraulic Division, ASCE, 108(HY12), 1518-1531
  24. Ward, L., Kemp, W., and Boyton, W. (1984). 'The influence of waves and seagrass communites on suspended particulate in an estuarine embayment.' Marine Geology, 59, 85-103 https://doi.org/10.1016/0025-3227(84)90089-6