DOI QR코드

DOI QR Code

Velocity and Discharge Measurement using ADCP

ADCP를 이용한 유속과 유량 측정

  • 이찬주 (한국건설기술연구원 수자원연구부) ;
  • 김원 (한국건설기술연구원 수자원연구부) ;
  • 김치영 (한국건설기술연구원 수자원연구부) ;
  • 김동구 (한국건설기술연구원 수자원연구부)
  • Published : 2005.10.01

Abstract

The ADCP is an instrument based on Doppler effect, which measures discharge of a river in a short time while crossing it. In this study we aim to make a comparison of the discharge results from a moving-vessel ADCP with those measured by velocity-area method at the same cross-section, and to investigate the characteristics of velocity and discharge data using ADCP. Bathymetry measured by ADCP almost coincides with that by direct depth measurements. Because velocity data from ADCP are essentially instantaneous, individual velocity profiles obtained by ADCP are rather different from time-averaged velocity profiles. But spatially averaged velocity profiles of the individual ADCP data near the comparable verticals have similar vertical velocity pattern with the time-averaged ones. The average velocity profile from repeatedly crossed data is also similar with the time-averaged one. In case of the velocity distribution, individual and spatially averaged data for the sub-width of mid-section method Have good agreement with those by velocity-area method. Discharge data determined by averaging several ADCP measurement transects have $0.1\%{\~}9.3\%$ of difference with those from velocity-area method, and as the number of measurement increases, the relative difference to the velocity-area method decreases.

ADCP는 음파의 도플러 효과를 이용하여 하천을 횡단하면서 단시간에 유속과 유량을 측정할 수 있는 장비이다. 본 연구는 현장 하천에서 ADCP를 이동식으로 운용하여 측정한 유속, 유량 자료를 동일한 지점에서 측정한 유속-면적법과 비교하여 ADCP를 이용한 유속, 유량 자료의 특성을 살펴볼 목적으로 수행되었다. ADCP에 의해 측정된 수심 분포는 직접 측심에 의해 측정한 수심 분포와 거의 일치하였다. ADCP로 측정한 유속은 순간적이므로 개별 연직유속분포는 시간평균한 유속-면적법 자료와 차이가 있었으나 유속 측선의 좌우에 근접한 자료를 공간적으로 평균할 경우 그 차이는 감소하고 유사한 유속 패턴을 나타내었으며, 왕복하여 반복한 측정 자료를 평균할 경우에도 시간평균한 자료와 비슷한 연직유속분포를 나타내었다. 수평유속분포의 경우 ADCP의 개별 자료 및 이를 중간단면적법에 해당하는 구간 하폭만큼 평균한 자료 역시 유속-면적법 자료와 잘 일치하는 양상을 나타내었다. 유량의 경우 한 지점에서 수 회 이상 평균한 값은 유속-면적법과 비교하여 $0.1\%{\~}9.3\%$의 차이가 나는 것으로 조사되었으며, 반복 측정 횟수를 늘릴 경우 유속-면적법 대비 오차가 감소하는 것으로 나타났다.

Keywords

References

  1. 김원, 윤광석, 김동구, 차준호 (2002). 'ADCP를 이용한 유량측정.' 2002년도 한국수자원학회 학술발표회 논문집, pp. 529-534
  2. 이찬주, 이두한, 김명환 (2004). 'ADCP를 이용한 하천유속 자료의 추출.' 2004년도 한국수자원학회 학술발표회논문집(CD-ROM)
  3. Adler, M. and Nicodemus, U. (2001). 'A new computer model for evaluation of data from acoustic dopper current profiler(ADCP).' Physics and Chemistry of the Earth(C), Vol. 26, No. 10-12, pp. 711-715 https://doi.org/10.1016/S1464-1917(01)95014-7
  4. Barua, D. K. and Rahman, K. H. (1998). 'Some aspects of turbulent flow structure in large alluvial rivers.' Journal of Hydraulic Research, IAHR, Vol. 36, No.2, pp. 235-252 https://doi.org/10.1080/00221689809498635
  5. Gartner, J. W. and Ganju, N. K. (2002). 'A preliminary evaluation of near-transducer velocities collected with low-blank acoustic Doppler current profiler.' Hydraulic Measurements & Experimental Methods, ASCE-IAHR Joint Conference, Estes Park, CO(CD-ROM) https://doi.org/10.1061/40655(2002)17
  6. Gonzalez-Castro, J., Ansar, M. and Kellman, O. (2002). 'Comparison of discharge estimates from ADCP transect data with estimates from fixed ADCP mean velocity data.' Hydraulic Measurements & Experimental Methods, ASCE-IAHR Joint Conference, Estes Park, CO(CDROM) https://doi.org/10.1061/40655(2002)15
  7. Gordon, R. L. (1989). 'Acoustic measurement of river discharge.' Journal of Hydraulic Engineering, ASCE, Vol. 115, No.7., pp. 925-936 https://doi.org/10.1061/(ASCE)0733-9429(1989)115:7(925)
  8. Holmes, R. R. and Garcia, M. H. (2002). 'Velocity and sediment concentration measurements over bedforms in sand-bed rivers.' Hydraulic Measurements & Experimental Methods, ASCE-IAHR Joint Conference, Estes Park, CO(CDROM) https://doi.org/10.1061/40655(2002)68
  9. ISO. (1997). 'ISO 748: Measurement of liquid flow in open channels-Velocity-area methods.' International Standard Organization Technical Report, ISO
  10. Kim, W., Yoon, K. and Woo, H. (2002). 'Analysis of hydraulic characteristics in the river mouth with large tidal difference - ADCP application.' Hydraulic Measurements & Experimental Methods, ASCE-IAHR Joint Conference, Estes Park, CO(CD-ROM) https://doi.org/10.1061/40655(2002)7
  11. Morlock, S. E. (1996). Evaluation of acoustic Doppler current profiler measurements of river discharge, US Geological Survey Water-Resources Investigations Report 95-4218
  12. Mueller, D. S. (2002). 'Field assessment of acoustic-doppler based discharge measurements.' Hydraulic Measurements & Experimental Methods, ASCE-IAHR Joint Conference, Estes Park, CO(CD-ROM) https://doi.org/10.1061/40655(2002)16
  13. Muste, M, Yu, K., Pratt, T. C. and Abraham, D. (2002). 'ADCP measurements at fixed river locations.' Hydraulic Measurements & Experimental Methods, ASCE-IAHR Joint Conference, Estes Park, CO(CD-ROM) https://doi.org/10.1061/40655(2002)73
  14. Muste, M, Yu, K., Pratt, T. and Abraham, D. (2004a). 'Practical aspects of ADCP data use for quantification of mean river flow characteristics; partII:fixed-vessel measurements.' Flow measurement and instrumentation, Vol. 15, No.1, pp. 17-28 https://doi.org/10.1016/j.flowmeasinst.2003.09.002
  15. Muste, M, Yu, K. and Spaspjevic, M. (2004b). 'Practical aspects of ADCP data use for quantification of mean river flow characteristics; part I :moving-vessel measurements.' Flow measurement and instrumentation, Vol. 15, No.1, pp. 1-16 https://doi.org/10.1016/j.flowmeasinst.2003.09.001
  16. Nystrom, E. A., Oberg, K. A. and Rehmann, C. R. (2002). 'Measurement of turbulence with acoustic Doppler current profilers-Source of error and laboratory results.' Hydraulic Measurements & Experimental Methods, ASCE-IAHR Joint Conference, Estes Park, CO(CD-ROM) https://doi.org/10.1061/40655(2002)55
  17. Nystrom, E. and Wall. G. (2003). 'ADCP measurement of suspended sediment in the tidal Hudson River.' USGS Surface Water Conference
  18. Oberg, K. (2002). 'In search of easy-to-use methods for calibrating ADCP's for velocity and discharge measurements.' Hydraulic Measurements & Experimental Methods, ASCE-IAHR Joint Conference, Estes Park, CO(CD-ROM) https://doi.org/10.1061/40655(2002)4
  19. RDI. (2003). Winriver User's Guide International Version, RD Instruments, San Diego, CA
  20. Rennie, C. D., Millar, R. G. and Church, M. A. (2002). 'Measurement of bedload velocity using an acoustic Doppler current profiler.' Journal of Hydraulics Engineering, ASCE, Vol. 128, No. 5., pp. 473-483 https://doi.org/10.1061/(ASCE)0733-9429(2002)128:5(473)
  21. Simpson, M. R. (2001). Discharge measurements using a broad-band acoustic doppler current profiler, US Geological Survey Open-File Report 01-1

Cited by

  1. Accuracy Improvement of Discharge Measurement with Modification of Distance Made Good Heading vol.2016, 2016, https://doi.org/10.1155/2016/9437401
  2. Analysis and Comparison of Flow Rate Measurements Using Various Discharge Measuring Instrument and ADCP vol.22, pp.2, 2013, https://doi.org/10.5322/JESI.2013.22.2.251
  3. Inter-comparison of Accuracy of Discharge Measurement Methods - A Case Study Performed in the Dalcheon River Downstream of the Goesan Dam- vol.43, pp.12, 2010, https://doi.org/10.3741/JKWRA.2010.43.12.1039
  4. A Study on the Estimation of Discharge in Unsteady Condition by Using the Entropy Concept vol.13, pp.12, 2012, https://doi.org/10.5762/KAIS.2012.13.12.6159