On-line Monitoring of IPTG Induction for Recombinant Protein Production Using an Automatic pH Control Signal

  • Hur Won (School of Biotechnology and Bioengineering, Kangwon National University) ;
  • Chung Yoon-Keun (School of Biotechnology and Bioengineering, Kangwon National University)
  • 발행 : 2005.08.01

초록

The response of IPTG induction was investigated through the monitoring of the alkali consumption rate and buffer capacity during the cultivation of recombinant E. coli BL21 (DE3) harboring the plasmid pRSET-LacZ under the control of lac promoter. The rate of alkali consumption increased along with cell growth, but declined suddenly after approximately 0.2 h of IPTG induction. The buffer capacity also declined after 0.9 h of IPTG induction. The profile of buffer capacity seems to correlate with the level of acetate production. The IPTG response was monitored only when introduced into the mid-exponential phase of bacterial cell growth. The minimum concentration of IPTG for induction, which was found out to be 0.1 mM, can also be monitored on-line and in-situ. Therefore, the on-line monitoring of alkali consumption rate and buffer capacity can be an indicator of the metabolic shift initiated by IPTG supplement, as well as for the physiological state of cell growth.

키워드

참고문헌

  1. Schugerl, K. (1991) Common instruments for process analysis and control. pp. 6-25. In: H. J. Rehm, G. Reed, A. Puhler, and P. Stadler (eds.) Biotechnology 4. VCH Publishers Inc., NY, USA
  2. Suzuki, T., T. Yamane, and S. Shimizu (1990) Phenomenological background and some preliminary trials of automated substrate supply in pH-stat model fed-batch culture using a set point of high limit. J. Ferment. Bioeng. 69: 292-297 https://doi.org/10.1016/0922-338X(90)90108-9
  3. Chung, Y. and W. Hur (2000) A new method of measuring of buffer capacity and alkali consumption rate of a fermentation process. J. Bioscience. Bioeng. 90: 580-582 https://doi.org/10.1016/S1389-1723(01)80047-5
  4. San, K. and G. Stephanopoulos (1984) Studies on on-line bioreactor identification IV. Utilization of pH measurement for product estimation. Biotechnol. Bioeng. 26: 1209-1218 https://doi.org/10.1002/bit.260261009
  5. Antonio, V., I. C. Juan, A. T. Jose, and U. Unai (1998) On-line estimation of biomass through pH control analysis in aerobic yeast fermentation systems. Biotechnol. Bioeng. 58: 445-450 https://doi.org/10.1002/(SICI)1097-0290(19980520)58:4<445::AID-BIT12>3.0.CO;2-A
  6. Hur, W. (1997) Mathematical analysis on the pH change during cell growth in a phosphate buffer based medium, Korean J. Biotechnol. Bioeng. 12: 167-175
  7. Han, K. (1992) A Study of Acetic Acid Formation in Escherichia coli Fermentation. Ph. D. Thesis. University of California, Irvine, CA, USA
  8. Luli, G. W. and W. R. Strohl (1990) Comparison of growth, acetate production, and acetate inhibition of Escherichia coli strains in batch and fed-batch fermentations. Appl. Environ. Microbiol. 56: 1004-1011
  9. Sun, W.-J., C. Lee, H. A. George, A. L. Powell, M. E. Dahlgren, R. Gresham, and C. H. Park (1993) Acetate inhibition on growth of recombinant E.coli and expression of fusion protein TGFa-PE40. Biotechnol. Lett. 15: 809-814
  10. Miller, G. L. (1959) Use of dinitrosalicylic acid reagent for determination of reduction sugar. Anal. Chem. 31: 426-428 https://doi.org/10.1021/ac60147a030
  11. Studier, F. W. and B. A. Moffatt (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 189: 113-130 https://doi.org/10.1016/0022-2836(86)90385-2
  12. Glick, B. R. (1995) Metabolic load and heterologous gene expression. Biotechnol. Adv. 13: 247-261 https://doi.org/10.1016/0734-9750(95)00004-A
  13. Zaslaver, A., A. E. Mayo, R. Rosenberg, P. Bashkin, H. Sberro, M. Tsalyuk, M. G. Surette, and U. Alon (2004) Just-in-time transcription program in metabolic pathways. Nature Genetics 36: 486-491 https://doi.org/10.1038/ng1348
  14. Kosinski, M. J., U. Rinas, and J. E. Bailey (1992) Isopropyl- $\beta$-D-thiogalactopyranoside influences the metabolism of Escherichia coli. Appl. Environ. Microbiol. 36:782-784
  15. Xu, Z., G. Liu, P. Cen, and W. K. R. Wong (2000) Factors influencing excretive production of human epidermal growth factor (hEGF) with recombinant Escherichia coli K12 system. Bioprocess. Biosystem Eng. 23: 669-674 https://doi.org/10.1007/s004490000218
  16. Lee, C., W.-J. Sun, B. W. Burgess, B. H. Junker, J. Reddy, B. C. Buckland, and R. L. Greasham (1997) Process optimization for large scale production of TGF-$\alpha$-PE40 in recombinant Escheriachia coli: Effect of medium composition and induction timing on protein expression. J. Ind. Microbiol. Biotechnol. 18: 260-266 https://doi.org/10.1038/sj.jim.2900382
  17. Sivakesava, S., Z. N. Xu, Y. H. Chen, J. Hackett, R. C. Huang, E. Lam, T. L. Lam, K. L. Siu, R. S. C. Wong, and W. K. R. Wong (1999) Production of excreted human epidermal growth factor(hEGF) by an efficient recombinant Escherichia coli system. Process Biochem. 34: 893-900 https://doi.org/10.1016/S0032-9592(99)00013-8
  18. Donovan, R. S., C. W. Robinson, and B. R. Glick (1996) Review: Optimizing inducer and culture conditions for expression of foreign proteins under the control of the lac promoter. J. Ind. Microbiol. 16: 145-54 https://doi.org/10.1007/BF01569997
  19. Studier, F. and B. Moffatt (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 189: 113-130 https://doi.org/10.1016/0022-2836(86)90385-2
  20. Xie, L., D. Hall, M. A. Etieman, and E. Altman (2003) Optimization of recombinant aminolevulinate synthase production in Escherichia coli using factorial design. Appl. Microbial. Biotechnol. 63: 267-273 https://doi.org/10.1007/s00253-003-1388-2
  21. Kosinski, M. J., U. Rinas, and J. E. Bailey (1992) Isopropyl- $\beta$-D-thiogalactopyranoside influences the metabolism of Escherichia coli. Appl. Microbiol. Biotechnol. 36: 782-783
  22. Donovan, R. S., C. W. Robinson, and B. R. Glick (2000) Optimizing the expression of a monoclonal antibody fragment under the transcriptional control of the Escherichia coli lac promoter. Can. J. Microbiol. 46: 532-541 https://doi.org/10.1139/cjm-46-6-532
  23. Ramisetti, S., H. A. Kang, S. K. Lee, and C. H. Kim (2003) Production of recombinant hirudin in galactokinase- deficient Saccharomyces cerevisiae by fed-batch fermentation with continuous glucose feeding. Biotechnol. Bioprocess Eng. 8: 183-186 https://doi.org/10.1007/BF02935894
  24. Kim, C. H., J. Rao, D. J. Youn, and S. K. Lee (2003) Scale-up of recombinant hirudin production from Saccharomyces cerevisiae. Biotechnol. Bioprocess Eng. 8: 303-305 https://doi.org/10.1007/BF02949222
  25. Albano, C. R., L. Randers-Eichhorn, W. E. Bentley, and G. Rao (1998) Green fluorescent protein as a real time quantitative reporter of heterologous protein production. Biotechnol. Prog. 14: 350-354 https://doi.org/10.1021/bp970121b
  26. Jones, J. J., A. M. Bridges, A. P. Fosberry, S. Gardner, R. R. Lowers, R. R. Newby, P. J. James, R. M. Hall, and O. Jenkins (2004) Potential of real-time measurement of GFP-fusion proteins. J. Biotechnol. 109: 201-211 https://doi.org/10.1016/j.jbiotec.2003.10.039
  27. Rhee, J. I., A. Ritzka, and T. Scheper (2004) On-line monitoring and control of substrate concentrations in biological processes by flow injection analysis systems. Biotechnol. Bioprocess Eng. 9: 156-165 https://doi.org/10.1007/BF02942286