통계학적 방법을 이용한 Bacillus clausii I-52로부터 염기성 단백질 분해효소 생산 증진

Increased Alkaline Protease Production from Bacillus clausii I-52 by Experimental Design Methods

  • 이재우 (인하대학교 공과대학 생물공학과) ;
  • 김현수 (누보연구소, 무궁화(주)) ;
  • 장정순 (인하대학교 의과대학 생화학교실) ;
  • 김은기 (인하대학교 공과대학 생물공학과)
  • Lee Jae-woo (Institute of Biotechnology, Department of Biological Engineering, Inha University) ;
  • Kim Hyun-soo (Nuvo Research Center, Moogunghwa Co.) ;
  • Chang Chung-soon (Biochemistry Lab., Medical School, Inha University) ;
  • Kim Eun-ki (Institute of Biotechnology, Department of Biological Engineering, Inha University)
  • 발행 : 2005.06.01

초록

Bacillus clausii I-52에서 생산되는 염기성 단백질 분해효소를 통계학적 방법을 이용하여 최적화하였다. 7개의 배지성분 중 Plakett-Burman 방법을 이용하여 단백질 분해효소 활성에 영향을 주는 3개의 성분을 선택했고, 또 영향을 주는 농도 범위를 Box-behken 방법에 의해 결정했다. 세 성분을 포함하는 염기성 단백질 분해효소의 생산 함수식을 구했고 이로부터 최적조건을 표면반응분석법을 이용해서 계산했다. 이에 근거한 이론적 최대 생산 활성 (Wheat flour: 0 g/l, Sodium citrate: 5 g/l, Sodium carbonate: 10 g/1)일 때 74000 U/mL의 결과를 얻었다. 실제 최적 배지를 이용한 실험에서는 92000 U/mL의 염기성 단백질 분해효소를 보였다. 최적화 이전 경우 생산량은 49000 U/mL로서 $90\%$의 증가율을 보였다.

Production of alkaline pretense by Bacillus clausii I-52 was optimized by experimental design methods. Among 7 medium components, three (wheat flour, sodium citrate, sodium carbonate) were selected as components affecting the pretense activity significantly by Plackett-Burman methods. Furthermore the ranges of effective concentrations were determined by Box-Behnken methods. The objective function describing the alkaline pretense production was obtained and optimum concentration of 3 components was determined by using response-surface methods (RSM). Theoretical maximum production was 74000 U/mL (Wheat flour: 0 g/L, Sodium citrate: 5 g/L, Sodium carbonate: 10 g/L). With the optimized medium composition, 92000 U/mL alkaline protease was produced experimentally, resulting in $90\%$ increase compared to before-optimization production (49000 U/mL).

키워드

참고문헌

  1. C. Canesh Kumar, Hiroshi Takagi (1999), Microbial alkaline protease: From a bio industrial viewpoint, Biotechnology Advances 17, 561-594 https://doi.org/10.1016/S0734-9750(99)00027-0
  2. Mala B. Rao, Aparana M. Tanksale, Mohini S. Ghatage, and Vasanti V. Deshpande (1998), Molecular and Biotechnological Aspects of Microbial Protease, Microbiology and Molecular Biology Reviews, 597-635
  3. H-S. Joo, C. G. Kumar, G-C. Park, S. R. Paik, and C-S. Chang (2003), Oxidant and SDS-stable alkaline protease from Bacillus clausii I-52: Production and some properties, Journal of Applied Microbiology 95. 267-272 https://doi.org/10.1046/j.1365-2672.2003.01982.x
  4. Torben Christiansen, Jens Nielsen (2002), Production of extracellular protease and glucose uptake in Bacillus clausii in steady-state and transient continuous culture, Journal of biotechnology 97. 265-273 https://doi.org/10.1016/S0168-1656(02)00109-8
  5. Qasim Khalil Beg, Vikram Sahai, Rani gupta (2003), Statistical media optimization and alkaline protease production from Bacillus mojavensis in a bioreactor, Process Biochemistry 1-7
  6. Han-Seung Joo, Gun-Chan Park, Kyung-Mi Kim, Seung R. Paik, and Chung-Soon Chang (2001), Novel alkaline protease from the polychaeta, Periserrula leucophryna: Purification and characterization, Process Biochemistry 36, 893-900 https://doi.org/10.1016/S0032-9592(00)00290-9
  7. Han-Seung Joo, Gun-Chan Park, Kyung-Mi Kim, Ki-Tae Kim, Seung R. Paik, and Chung-Soon Chang (2002), Optimization of the production of an extracellular alkaline protease from Bacillus horikoshii, Process Biochemistry 38, 155-159 https://doi.org/10.1016/S0032-9592(02)00061-4
  8. Qasim Khalil Beg, R. K. Saxena, Rani Gupta (2002), De-repression and subsequent induction of protease synthesis by Bacillus mojavensis under fed-batch operations, Process Biochemistry 37, 1103-1109 https://doi.org/10.1016/S0032-9592(01)00320-X
  9. Uttam Chand Banerjee, Rajesh Kunar Sani, Wamik Azmi, Raman Soni (1999), Thermostable alkaline protease from Bacillus brevis and its characterization as a laundry detergent additive, Process Biochemistry 35, 213-219 https://doi.org/10.1016/S0032-9592(99)00053-9