모사 이동층 크로마토그래피

Simulated Moving Bed [SMB]

  • 이종호 (인하대학교 생물공학과, 초정밀생물분리기술연구소) ;
  • 구윤모 (인하대학교 생물공학과, 초정밀생물분리기술연구소)
  • Lee Chong-Ho (Department of Biological Engineering, Inha University) ;
  • Koo Yoon-Mo (Department of Biological Engineering, Inha University)
  • 발행 : 2005.06.01

초록

Chromatography has been a method of choice in the separation of complex biological mixtures for the analytical purpose in particular for the last half of century. In current years, chromatographic method extends its use to the preparative separation where the productivity per resin amount and solvent use become a matter of concern. Recently, simulated moving bed (SMB) method which claims high separation efficiency of the ideal counter-current moving bed chromatography has become a workhorse of preparative separation. SMB technology was developed in the early 1960s for large-scale hydrocarbon separation by UOP and approximately 120 Sorbex units have been licensed to date. Recently, SMB separation technology has been successfully extended from hydrocarbons and sugars to fine chemicals, particularly biochemicals, from laboratory to pilot to production plant. In this paper, the current status of SMB and its modifications were reviewed.

키워드

참고문헌

  1. Broughton, D. B. and C. G. Gerhold (1961), US Patent, 2985589
  2. Barker, P. E. and G. Ganetsos (1988), Chemical and biochemical separations using preparative and large-scale batch and continuous chromatography, Sep. Purif. Methods 17, 165
  3. Ruthven, D. M. and C. B. Ching (1989), Countercurrent and simulated countercurrentadsorption separation processes, Chem. Eng. Sci. 44, 1011-1038 https://doi.org/10.1016/0009-2509(89)87002-2
  4. Ganetsos, G. and P. E. Barker (1994), Preparative and Production Scale Chromatography, Marcel Dekker, New York
  5. Ching, C. B. and D. M. Ruthven (1985), An experimental study of a simulated counter-current adsorption system - I. Isothermal steady state operation, Chem. Eng. Sci. 40, 877-885 https://doi.org/10.1016/0009-2509(85)85001-6
  6. Ruthven, D. M. (1984), Principles of Adsorption and Adsorption Processes, Wiley, New York
  7. Wankat, P. C. (1986), Large Scale Adsorption and Chromatography, CRC Press, Boca Raton, FL
  8. Zhong, G. and G. Guiochon (1998), Adv. Chromatogr. 39, 351
  9. Juza, M., M. Mazzotti, M. Morbidelli (2000), Simulated moving bed chromatography and its application to chirotechnology, Trends Biotechnol. 18, 108-118 https://doi.org/10.1016/S0167-7799(99)01419-5
  10. Schulte, M and J. Strube (2001), Preparative enantioseparation by simulated moving bed chromatography, J. Chromatogr. A 906, 399-416 https://doi.org/10.1016/S0021-9673(00)00956-0
  11. Rekoske, J. E. (2001), Chiral separations, AIChE J. 47, 2-5 https://doi.org/10.1002/aic.690470102
  12. Stinson, S. C. (1995), Chem. Eng. News 73, 44
  13. Negawa, M., F. Shoji, and Daicel Chemical Industries Ltd., U.S. Patent, 5,456,825 (1995)
  14. Barker, P. E. and G. Ganetsos, The development and applications of preparative-scale continuous chromatography, Sep. Sci. Technol. 22, 2011-2035 https://doi.org/10.1080/01496398708057625
  15. Ganetsos, G., P. E. Barker, and J. N. Ajongwen (1993), Batch and continuous chromatographic systems as combined bioreactors-separators, In Preparative and Production Scale Chromatography, G. Ganestos and P.E. Barker, Eels., Marcel Dekker, New York
  16. Barker, P. E., G. Ganetsos, J. Ajongwen, and A. Akintoye (1992), Bioreaction separation on continuous chromatographic systems, Chem. Eng. Biochem Eng. J. 50, B23-B28
  17. Hashimoto, K., S. Adachi, H. Noujima, and Y. Ueda (1983), A new process combining adsorption and enzyme reaction for producing higher fructose syrup, Biotechnol. Bioeng. 25, 2371-2393 https://doi.org/10.1002/bit.260251008
  18. Sarmidi, M. R. and P. E. Barker (1993), Simultaneous biochemical reaction and separation in a rotating annular chromatograph, Chem. Eng. Sci. 48, 2615-2623 https://doi.org/10.1016/0009-2509(93)80272-R
  19. Altenhoner, M. U., J. Strube, A. Untiedt, and H. Schmidt-Traub (1996), Dynamic simulation of a simulated-moving bed chromatographic for the inversion of sucrose, Starch/Starke 48, 452-457 https://doi.org/10.1002/star.19960481113
  20. Storti, G., M. Masi, S. Carra, M. Mazzotti, and M. Morbidelli (1989), Chem. Eng. Sci. 44, 1329 https://doi.org/10.1016/0009-2509(89)85006-7
  21. Storti, G., M. Mazotti, M. Morbidelli, and S. Carra (1993), AIChE J. 39, 471 https://doi.org/10.1002/aic.690390310
  22. Mazzotti, M., G. Storti, and M. Morbidelli (1994), AIChE J. 40, 1825 https://doi.org/10.1002/aic.690401107
  23. Storti, G., R. Baciocchi, M. Mazzotti, and M. Morbidelli (1995), Ind. Eng. Chem. Res. 34, 288 https://doi.org/10.1021/ie00040a031
  24. Mazzotti, M., G. Storti, and M. Morbidelli (1996), AIChE J. 42, 2784 https://doi.org/10.1002/aic.690421010
  25. Mazzotti, M., G. Storti, and M. Morbidelli (1997), AIChE J. 43, 64 https://doi.org/10.1002/aic.690430109
  26. Zhong, G. and G. Guiochon (1996), Chem. Eng. Sci. 51, 4307 https://doi.org/10.1016/0009-2509(96)00262-X
  27. Yun, T., G. Zhong, and G. Guiochon (1997), AIChE J. 43, 935 https://doi.org/10.1002/aic.690430409
  28. Morbidelli, M., A. Servida, G. Storti, and S. Carra (1982), Ind. Eng. Chem. Fundam. 21, 123 https://doi.org/10.1021/i100006a005
  29. Charton, F. and R. M. Nicoud (1995), J. Chromatogr. A 702, 97 https://doi.org/10.1016/0021-9673(94)01026-B
  30. Zhong, G. and G. Guiochon (1997), Chem. Eng. Sci. 52, 4403 https://doi.org/10.1016/S0009-2509(97)00179-6
  31. Khattabi, S., D. E. Cherrak, K. Mihlbachler, and G. Guiochon, J. Chromatogr. A 893, 307 https://doi.org/10.1016/S0021-9673(00)00761-5
  32. Nicoud, R. M. (1997), Recent advances in industrial chromatographic processes, p4, NOVASEP, Nancy
  33. Ray, A., A. Tonkovich, R. W. Carr, and R. Aris (1990), The simulated countercurrent moving-bed chromatographic reactor, Chem. Eng. Sci. 45, 2431-2437 https://doi.org/10.1016/0009-2509(90)80125-X
  34. Azevedo, D. C. S. and A. E. Rodrigues (2001), Design methodology and operation of a simulated moving bed reactor for the inversion of sucrose and glucose fructose separation, Chem. Eng. J. 82, 95-107 https://doi.org/10.1016/S1385-8947(00)00359-4
  35. Yu, W., K. Hidajat and A. K. Ray (2003), Modelillg, simulation, and experimental study of a simulated moving bed reactor for the synthesis of methyl acetate ester, Ind. Eng. Chem. Res. 42, 6743-6754 https://doi.org/10.1021/ie0302241
  36. Cen, P. and G. T. Tsao (1993), Recent advances in the simultaneous bioreaction and product separation processes, Sep. Technol. 3, 5875
  37. Zabransky, R. F. and R. F. Anderson (1977), U.S. Patent, 4049739
  38. Juza, M, O. Di Giovanni, G. Biressi, V. Schurig, M. Mazzotti, and M. Morbidelli (1998), J. Chromatogr. A 813, 333 https://doi.org/10.1016/S0021-9673(98)00322-7
  39. Clavier, J. Y., R. M. Nicoud, and M. Perrut (1996), In High Pressure Chemical Engineering, Ph.R. von Rohr and Ch. Trepp, Eels., Elsevier
  40. Migliorini, C., M. Wendlinger, M. Mazzotti, and M. Morbidelli (2001), Ind. Eng. Chem. Res. 40, 2606 https://doi.org/10.1021/ie000825h
  41. Abel, S., M. Mazzotti, and M. Morbidelli (2002), J. Chromatogr. A 944, 23 https://doi.org/10.1016/S0021-9673(01)01087-1
  42. Depta, A., T. Giese, M. Johannsen, and G. Brunner (1999), J. Chromatogr. A 865, 175 https://doi.org/10.1016/S0021-9673(99)00833-X
  43. Denet, F, W. Hauck, R. M. Nicoud, O. Di Giovanni, M. Mazzotti, J. N. Jaubert, and M. Morbidelli (2001), Ind. Eng. Chem. Res. 40, 4603 https://doi.org/10.1021/ie000959v
  44. Peper, S., M. Lubbert, M. Johannsen, and G. Brunner (2002), Sep. Sci. Technol. 37, 2545 https://doi.org/10.1081/SS-120004452