Characteristics of Preparative Liquid Chromatography

제조용 액체 크로마토그래피의 특성

  • Row, Kyung-Ho (Center for Advanced Bioseparation Technology, Department of Chemical Engineering, Inha University) ;
  • Jin, Yin-Zhe (Center for Advanced Bioseparation Technology, Department of Chemical Engineering, Inha University)
  • 노경호 (초정밀생물분리기술연구센터, 인하대학교 화학공학과) ;
  • 김은철 (초정밀생물분리기술연구센터, 인하대학교 화학공학과)
  • Published : 2005.06.01

Abstract

Recently preparative liquid chromatography (PLC) has been used more frequently to separate drugs and natural substances. This modern separation methodologies require reliable tools that perform on a high level in terms of efficiency and reproducibility. However, large-scale PLC easily tends to reduce the yield and purity of the product. To promote the separation efficiency of PLC, we need to properly understand the controlling effects of the process, which may enable to predict the process and to improve the design and operation of PLC. Progress in computer technology allows the use of sophisticated models, provided their parameters can be measured. Some hardwares as well as softwares for PLC were already commercially available. In this work, the separation characteristic of PLC will be reviewed and compared on both the software and the hardware.

PLC는 약물과 천연물질의 분리에 많이 사용된다. 분석용으로부터 제조용으로의 scale-up에 따른 분리도가 낮아지는 것을 방지하여야 하며 또한 분리에 대한 효율성과 생산성을 고려하여야 한다. PLC의 최적조건을 선정하는 것은 많은 조업변수에 대한 고려를 해야 하는 힘든 작업이다. 소프트웨어를 이용한 분리 공정의 디자인, 최적화, 모사, 분석 등을 통하여 시간을 절약할 수 있으며 효율적으로 공정에 적용되게 한다. 하드웨어에 대한 기초 실험과 예비 생산을 통하여 이러한 공정에 대한 모사를 검증하고 생산량을 결정하고 분리 효율을 증가시킬 수 있다. 소프트웨어와 하드웨어의 특성, 종류, 응용을 예로 들어 설명함으로써 분리하고자 하는 물질에 대한 적합한 시스템을 선택하고 적용하여 분리공정을 생산화 할 수 있다. 크로마토그래피의 중요성이 증가함에 따라 고성능 및 사용하기 더욱 편리 한 소프트웨어와 하드웨어가 나타날 것이며 많은 영역의 분리 공정에서 필수적으로 이용될 것이다.

Keywords

References

  1. G. Guiochon (2002), Preparative liquid chromatography, J. Chromatogr. A, 965, 129-161 https://doi.org/10.1016/S0021-9673(01)01471-6
  2. Christensen, J. H., J. Mortensen, A. B. Hansen, and O. Andersen (2005), Computerized separation of chromatographically unresolved peaks, J. Chromatogr. A, 1062, 113-123 https://doi.org/10.1016/j.chroma.2004.11.037
  3. Paterson, S., R. Cordero, and S. Burlinson (2004), Screening and semi-quantitative analysis of post mortem blood for basic drugs using gas chromatography/ion trap mass spectrometry, J. Chromatogr. B, 813, 323-330 https://doi.org/10.1016/j.jchromb.2004.10.036
  4. Hao, C., J. V. Headley, K. M. Peru, R. Frank, P. Yang, and K. R. Solomon (2005), Characterization and pattern recoguition of oil-sand naphthenic acids using comprehensive two-dimensional gas chromatography/ time-of-flight mass spectrometry, J. Chromatogr. A, 1067, 277-284 https://doi.org/10.1016/j.chroma.2005.01.041
  5. Di, L., O. J. McConnell, E. H. Kerns, and A. G. Sutherland (2004), Rapid, automated screening method for enzymatic transformations using a robotic system and supercritical fluid chromatography, J. Chromatogr. B, 809, 231-235
  6. Ramirez, P., F. J. Senorans, E. Ibanez and G. Reglero (2004), Separation of rosemary antioxidant compounds by supercritical fluid chromatography on coated packed capillary columns, J. Chromatogr. A, 1057, 241-245 https://doi.org/10.1016/j.chroma.2004.09.037
  7. Hirata, Y., K. Tsuda, and E. Imamura (2005), Serially coupled capillary columns supercritical fluid chromatography with midpoint pressure control, J. Chromatogr. A, 1062, 269-273 https://doi.org/10.1016/j.chroma.2004.11.051
  8. Barth, T., S. Hoiland, P. Fotland, K. M. Askvik, B. S. Pedersen, and A. E. Borgund (2004), Acidic compounds in biodegraded petroleum, Organic Geochemistry 35, 1513-1525 https://doi.org/10.1016/j.orggeochem.2004.05.012
  9. Bennett, B., A. Lager, C. A. Russell, G. D. Love, and S. R. Larter (2004), Hydropyrolysis of algae, bacteria, archaea and lake sediments; insights into the origin of nitrogen compounds in petroleum, Organic Geochemistry 35, 1427-1439 https://doi.org/10.1016/j.orggeochem.2004.07.006
  10. Kang, D. H. and K. H. Row (2002), Fractionation of soybean phospholipids by preparative high-performance liquid chromatography with sorbents of various particle size, J. Chromatogr. A, 949, 217-223 https://doi.org/10.1016/S0021-9673(01)01477-7
  11. Park, Y. K., K. H. Row, and S. T. Chung (2000), Adsorption characteristics and separation of taxol from yew tree by NP-HPLC, Separation: Purification Technology 19, 27-37 https://doi.org/10.1016/S1383-5866(99)00075-1
  12. Sott, R. P. W. and P. Kucera (1976), Some aspects of preparativescale liquid chromatography, J. Chromatogr. A, 119, 467-482 https://doi.org/10.1016/S0021-9673(00)86809-0
  13. Hupe, K. P. and H. H. Lauer (1981), Selection of optimal conditions in preparative liquid chromatography: I. Theory, J. Chromatogr. A, 203, 41-52 https://doi.org/10.1016/S0021-9673(00)80280-0
  14. Strohlein, G., M. Mazzotti, and M. Massimo (2005), Optimal operation of simulated-moving-bed reactors for nonlinear adsorption isotherms and equilibrium reactions, Chemical Engineering Science 60, 1525-1533 https://doi.org/10.1016/j.ces.2004.10.018
  15. Hao, W. and J. Wang (2005), Evaluation of nonlinear chromatographic performance by frontal analysis using a simple multi-plate mathematical model, J. Chromatogr. A, 1063, 47-56 https://doi.org/10.1016/j.chroma.2004.11.065
  16. Mary J. W., E. A. Smith, and S. R. Anthony (2004), Measurement and simulation of tailing zones of a cationic dye in analytical-scale reversed phase chromatography, J. Chromatography A, 1034, 69-75 https://doi.org/10.1016/j.chroma.2004.01.071
  17. Feng, W., X. Zhu, L. Zhang, and X. Geng (1996), Retention behaviour of proteins under conditions of column overload in hydrophobic interaction chromatography, J. Chromatogr. A, 729, 43-47 https://doi.org/10.1016/0021-9673(95)01049-1
  18. Felinger, A. and G. Guiochon (1998), Comparing the optimum performance of the different modes of preparative liquid chromatography, J. Chromatography A, 796, 59-74 https://doi.org/10.1016/S0021-9673(97)01075-3
  19. Andreas, S. M. (2004), Experimental determination of single solute and competitive adsorption isotherms, J. Chromatogr. A, 1037, 255-272 https://doi.org/10.1016/j.chroma.2003.11.108
  20. Coq, B., G. Cretter, and J. L. Rocca (1979), Preparative liquid chromatography: sample volume overload, J. Chromatogr. A, 186, 457-473 https://doi.org/10.1016/S0021-9673(00)95267-1
  21. Jong, A. W. J., H. Poppe, and J. C. Kraak (1981), Column loadability and particle size in preparative liquid chromatography, J. Chromatogr. A, 209(3), 432-436 https://doi.org/10.1016/S0021-9673(00)80611-1
  22. Lee, Y. W., K. H. Row, M. S. So, I. A. Polunina, and A. V. Larin (1995), Reversed-Phase HPLC Retention of Deoxyribonucleosides as a Function of Mobile Phase Composition, J. Liquid Chromatogr. 18(15), 3077-3089 https://doi.org/10.1080/10826079508010434
  23. Kim, J. D., K. H. Row, M. S. So, I. A. Polunina, and A. V. Larin (1995), Chromatographic Behaviour of Deoxyribonucleosides with respect to Organic Modifier Content in the Mobile Phase, J. Liquid Chromatogr. 18(15), 3091-3104 https://doi.org/10.1080/10826079508010435
  24. Lee, Y. W., M. S. So, J. W. Lee, S. T. Chung, and K. H. Row (1996), Retention Models of Capacity Factor with Different Compositions of Organic Modifier in RP-HPLC, Korean J. Chem. Eng. 13(6), 578-584 https://doi.org/10.1007/BF02706024
  25. Polunina, I. A., D. K. Choi, K. H. Row, and A. V. Larin (1996), Adsorption Isotherm of Deoxyadenosine under the Conditions of a Reverse Phase Liquid Chromatography, Colloid J. 58(6), 805-807
  26. Larin, A. V. and K. H. Row (1997), Novel Relationship between the Capacity Factor and the Fraction of Organic Modifier in the Mobile Phase, Russian J. of Anal. Chem. 52(10), 1064-1066
  27. Row, K. H. (1998), Comparison of Retention Models for the Dependence of Retention Factors on Mobile-Phase Composition in Reversed-Phase High-Performance Liquid Chromatography, J. Chromatogr. 797, 23-31 https://doi.org/10.1016/S0021-9673(97)00969-2
  28. Row, K. H. and A. V. Larin (1995), A Chromatographic Theory based on the Concept of a Layer of Equilibrium Adsorption, Korean J. Chem. Eng. 12(4), 442-447 https://doi.org/10.1007/BF02705808
  29. Row, K. H. and A. V. Larin (1995), Computational Algorithm to Predict Peak Profiles in Preparative High-Performance Chromatography, Korean J. Chem. Eng. 12(5), 512-515 https://doi.org/10.1007/BF02705852
  30. Row, K. H. and A. V. Larin (1995), Experimental Study of Influence of Slight Deviation from Adsorption Isotherm Linearity on Elution Peak Profiles, J. Chem. Eng. Japan 28(6), 851-853 https://doi.org/10.1252/jcej.28.851
  31. http://www2.inha.ac.kr/~hci/hpg.htm
  32. Choi, Y. S., J. W. Lee, and K. H. Row (2000), Comparison of Frontal Analysis and Pulsed Input Method for Determining Adsorption Isotherm, Korean J. Chem. Eng. 38(4), 474-478
  33. Yuwen, Z., W. Yuyuan, O. Jianying, and Z. Jilin (2005), The experimental study on the performance of a small-scale oxygen concentration by PSA, Separation and Purification Technology 42, 123-127 https://doi.org/10.1016/j.seppur.2004.07.001
  34. Rajasree, R. and A. S. Moharir (2000), Simulation based synthesis, design and optimization of pressure swing adsorption (PSA) processes, Computers and Chemical Engineering, 24, 2493-2505 https://doi.org/10.1016/S0098-1354(00)00606-2
  35. Esteves, I. A. A. C. and J. P. B. Mota (2002), Simulation of a new hybrid membrane/pressure swing adsorption process for gas separation, Desalination, 148, 275-280 https://doi.org/10.1016/S0011-9164(02)00713-0
  36. Ambalavanan, J. and T. Y. Ralph (2005), Stable oxygen-selective sorbents for air separation, Chemical Engineering Science 60, 625-634 https://doi.org/10.1016/j.ces.2004.08.032
  37. Choi, W. K., T. I. Kwon, Y. K. Yeo, H. Lee, H. K. Song, and B. K. Na (2003), Optimal Operation of the Pressure Swing Adsorption (PSA) Process for CO2 Recovery, Korean J. Chem. Eng. 20(4), 617-623 https://doi.org/10.1007/BF02706897
  38. Park, S., V. K. Mathur, and R. P. Planalp (1998), Syntheses, solubilities and oxygen absorption properties of new cobalt(II) Schiff-base complexes, Polyhedron 17(2-3), 325-330 https://doi.org/10.1016/S0277-5387(97)00308-2
  39. Cruz, P., J. C. Santos, F. D. Magalhaes, and A. Mendes (2003), Cyclic adsorption separation processes:analysis strategy andoptimization procedure, Chemical Engineering Science 58, 3143-3158 https://doi.org/10.1016/S0009-2509(03)00189-1
  40. Boger, T., A. Salden, and O. Eigenberger (1997), A combined vacuum and temperature swing adsorption process for the recovery of amine from foundry air, Chemical Engineering and Processing 36, 231-241 https://doi.org/10.1016/S0255-2701(96)04185-2
  41. Andrzej, S. (2003), Reactive separations for process intensification:an industrial perspective, Chemical Engineering and Processing 42, 137-144 https://doi.org/10.1016/S0255-2701(02)00084-3
  42. Rouf, S. A., P. L. Douglas, M. Moo-Young, and J. M. Scharer (2001), Computer simulation for large scale bioprocess design, Biochemical Engineering Journal 8, 229-234 https://doi.org/10.1016/S1369-703X(01)00112-7
  43. Fricke, J. and H. Schmidt-Traub (2003), A new method supporting the design of simulated moving bed chromatographic reactors, Chemical Engineering and Processing 42, 237-248 https://doi.org/10.1016/S0255-2701(02)00093-4
  44. Orodahl, M., A. Teleman, and P. Oatenholm (2003), Effect of acetylation on the material properties of glucuronoxylan from aspen wood, Carbohydrate Polymers 52, 359-366 https://doi.org/10.1016/S0144-8617(03)00014-6
  45. Teleman, A., M. Nordstro, M. Tenkanen, A. Jacobs, and O. Dahlman (2003), Isolation and characterization of O-acetylated glucomannans from aspen and birch wood, Carbohydrate Research 338, 525-534 https://doi.org/10.1016/S0008-6215(02)00491-3
  46. Jacobs, Anna., J. Lundqvist, H. Stabrand, F. Tjemeld, and O. Dahlman (2002), Characterization of water-soluble hemicelluloses from spruce and aspen employing SEC/MALDI mass spectroscopy, Carbohydrate Research, 337, 711-717 https://doi.org/10.1016/S0008-6215(02)00054-X
  47. Miri, R., R. Dizene, and R. Joulie (2004), Influence of adsorbent particles on a dynamic protein membrane in cross flow filtration, Desalination 168, 329-339 https://doi.org/10.1016/j.desal.2004.07.016
  48. http://www.acdlabs.com/ADSim
  49. http://www.aspentech.com/
  50. Kim J. K. and P. C. Wankat (2003), Scaling and Intensification Procedures for Simulated Moving-Bed Systems, AIChE Journal 49(11), 2810-2821 https://doi.org/10.1002/aic.690491114
  51. http://www.lcresources.com/
  52. http://www.iristechnologies.net/ChromSword/ChromSwordAuto.htm
  53. Row K. H. (1989), Separation technology of nucleoside and nucleotide by chromatography, Chemical Industry and Technology 7(2), 162-168
  54. http://www.chemsw.com/
  55. http://www.acdlabs.com/products/chrom_lab/lc_simulator/
  56. http://www.scisw.com
  57. http://www.chromperfect.com
  58. http://www.knauer.net/cgi-bin/e_artikel.pl?ptype=software,%20complete
  59. Wolf, D., N. Dropka, Q. Smejkal, and O. Buyevskaya (2001), Oxidative dehydrogenation of propane for propylene production-comparison of catalytic processes, Chemical Engineering Science 56, 713-719 https://doi.org/10.1016/S0009-2509(00)00280-3
  60. Row, K. H., D. K. Choi, K. Y. Huang, and Y. Y. Lee (1990), Separation by Chromatopaphy, Chemical Industry and Technology 8(4), 425-434
  61. http://www.jaikorea.co.kr
  62. http://www.novasep.com/what/constructions.htm
  63. Song, M. S., Y. W. Lee, J. D. Kim, and K. H. Row (2003), Extraction of Acanthoside-D in Acanthopanax Senticosus by Supercitical Fluid, HWAHAK KONGHAK 41(2), 207-212
  64. http://www1.shimadzu.com/products/lab/hplc.html
  65. http://www.waters.com
  66. http://www.chem.agilent.com
  67. http://www.merck.de
  68. http://www.sepragen.com/products/automation.html
  69. http://www.laball.co.kr/laballiance/system/prep200hplc.htm