A Genetic Algorithm with a New Encoding Method for Bicriteria Network Designs

2기준 네트워크 설계를 위한 새로운 인코딩 방법을 기반으로 하는 유전자 알고리즘

  • 김종율 (동서대학교 첨단기술연구센터) ;
  • 이재욱 (동서대학교 인터넷공학부) ;
  • 현광남 (일본 와세다대학교 정보생산시스템연구과)
  • Published : 2005.10.01

Abstract

Increasing attention is being recently devoted to various problems inherent in the topological design of networks systems. The topological structure of these networks can be based on service centers, terminals (users), and connection cable. Lately, these network systems are well designed with tiber optic cable, because the requirements from users become increased. But considering the high cost of the fiber optic cable, it is more desirable that the network architecture is composed of a spanning tree. In this paper, we present a GA (Genetic Algorithm) for solving bicriteria network topology design problems of wide-band communication networks connected with fiber optic cable, considering the connection cost, average message delay, and the network reliability We also employ the $Pr\ddot{u}fer$ number (PN) and cluster string in order to represent chromosomes. Finally, we get some experiments in order to certify that the proposed GA is the more effective and efficient method in terms of the computation time as well as the Pareto optimality.

인터넷이 발전함에 따라 네트워크 시스템의 토폴로지 설계에 관한 여러 가지 문제들에 관심이 증가하고 있다. 이러한 네트워크의 토폴로지 구조는 서비스 센터, 터미널(사용자), 그리고 연결 케이블로 이뤄져 있으며 네트워크 시스템들은 사용자들로부터의 요구사항이 많아지고 있기에 주로 광케이블로 구축하는 경우가 점차 늘어나고 있다. 하지만, 광케이블의 고비용을 고려하면 네트워크의 구조가 스패닝 트리로 구축되어 지는 것이 바람직하다고 볼 수 있다. 본 논문에서는 연결비용, 평균 메시지 지연, 네트워크 신뢰도를 고려하여, 광케이블로 구성되는 광대역 통신 네트워크의 2기준 네트워크 토폴로지 설계 문제들을 풀기 위한 유전자 알고리즘을 제안한다. 또한, 후보 네트워크 토폴로지 구조를 염색체로 표현하기 위해 $Pr\ddot{u}fer$수(PN)와 클러스터 스트링으로 구성되는 새로운 인코딩 방법도 제안한다. 마지막으로 제안한 유전자 알고리즘이 계산 시간뿐만 아니라 파레토 최적성의 관점에서도 보다 효율적이며 효과적인 방법이라는 것을 수치예를 통해 살펴본다.

Keywords

References

  1. Mukherjee, B., Optical Communication Networks, McGraw-Hill, Inc., New York, 1997
  2. Gen, M. and R. Cheng, Genetic Algorithms and Engineering Design, John Wiley & Sons, New York, 1997
  3. Gen, M. and R. Cheng, Genetic Algorithms and Engineering Optimization, John Wiley & Sons, New York, 2000
  4. Gen, M. and Y. Z. Li, 'Spanning tree-based genetic algorithm for bicriteria transportation problem,' Proceedings of Japan-China Joint International Workshops on Information Systems, pp.123-134, 1997
  5. Zhou, G., and M. Gen, 'Evolutionary computation on multicriteria production process planning problem,' Proceedings of IEEE International Conference on Evolutionary Computation, pp.419-424, 1997 https://doi.org/10.1109/ICEC.1997.592347
  6. Zhou, G., and M. Gen, 'Approach to degree-constrained minimum spanning tree problem using genetic algorithm,' Engineering Design & Automation, Vol.3, No.2, pp.157-165, 1997
  7. Dengiz, B., F. Altiparmak, and A. E. Smith, 'A genetic algorithm approach to optimal topology design of all terminal networks,' Intelligent Engineering Systems Through Artificial Neural Network, Vol.5, pp.405-410, 1995
  8. Dengiz, B., F. Altiparmak, and A. E. Smith, 'Efficient optimization of all-terminal reliable networks using evolutionary approach,' IEEE Transaction on Reliability, Vol.46, No.1, pp.18-26, 1997 https://doi.org/10.1109/24.589921
  9. Bertsekas, D. and R. Gallager, Data Networks, 2nd ed., Prentice-Hall, New Jersey, 1992
  10. Gen, M., K. Ida, and J. R. Kim, 'A Spanning Tree-based Genetic Algorithm for Bicriteria Topological Network Design,' Proceedings of IEEE International Conference on Evolutionary Computation, pp.15-20, 1998 https://doi.org/10.1109/ICEC.1998.699068
  11. Gen, M., K. Ida, J. R. Kim, and J. U. Lee, 'Bicriteria Network Design using Spanning Tree-based Genetic Algorithm,' Proceedings of 3rd International Symposium on Artificial Life and Robotics, Vol.1, pp.43-46, 1998
  12. Skiena, S., Implementing Discrete Mathematics Combinatorics and Graph Theory with Mathematica, Addison-Wesley, Reading, MA, 1990
  13. Kershenbaum, A., Telecommunication Network Design Algorithms, McGraw-Hill, Inc., New York, 1993
  14. Kershenbaum, A. and R. Van Slyke, 'Recursive analysis of network reliability,' Networks, Vol.3, pp.81-94, 1973 https://doi.org/10.1002/net.3230030107
  15. Orvosh, D. and L. Davis, 'Using a genetic algorithms to optimize problems with feasibility constraints,' Proceedings of IEEE International Conference on Evolutionary Computation, IEEE Press, Orlando, Florida, pp.548-552, 1994 https://doi.org/10.1109/ICEC.1994.350001
  16. Elbaum, R. and M. Sidi, 'Topological design of local-area networks using genetic algorithms,' IEEE/ACM Transactions on Networking, Vol.4, No.5, pp.766-778, 1996 https://doi.org/10.1109/90.541324
  17. Hwang, C. and K. Yoon, Multiple Attribute Decision Making: Methods and Applications, Springer-Verlag, Berlin, 1981
  18. Zhou, G and M. Gen, 'A Genetic Algorithm Approach on Tree-like Telecommunication Network Design Problem,' The Journal of the Operational Research Society, Vol.54, No.3, pp.248-254, 2003 https://doi.org/10.1057/palgrave.jors.2601510
  19. Gen, M. and R. Cheng, 'Evolutionary Network Design: Hybrid Genetic Algorithms Approach,' International Journal of Computational Intelligence and Applications, Vol.3, No.4, pp.357-380, 2003 https://doi.org/10.1142/S1469026803001075
  20. G. R. Raidl and B. A. Julstrom, 'Edge Sets: An effective evolutionary coding of spanning trees,' IEEE Transaction on Evolutionary Computation, Vol.7, No.3, pp.225-239, June, 2003 https://doi.org/10.1109/TEVC.2002.807275