Stress-Strain Behavior of the Electrospun Thermoplastic Polyurethane Elastomer Fiber Mats

  • Lee Keunhyung (Department of Advanced Materials Engineering, Chonbuk National University) ;
  • Lee Bongseok (Department of Textile Engineering, Chonbuk National University) ;
  • Kim Chihun (Department of Textile Engineering, Chonbuk National University) ;
  • Kim Hakyong (Department of Textile Engineering, Chonbuk National University) ;
  • Kim Kwanwoo (Department of Bionano System Engineering, Chonbuk National University) ;
  • Nah Changwoon (Department of Polymer Nano Science and Technology, Chonbuk National University)
  • 발행 : 2005.10.01

초록

Thermoplastic polyurethane elastomer (TPUe) fiber mats were successfully fabricated by electrospinning method. The TPUe fiber mats were subjected to a series of cycling tensile tests to determine the mechanical behavior. The electrospun TPUe fiber mats showed non-linear elastic and inelastic characteristics which may be due to slippage of crossed fiber (non-bonded or physical bonded structure) and breakage of the electro spun fibers at junctions (point-bonded or chemical bonding structure). The scanning electron microscopy (SEM) images demonstrated that the point-bonded structures of fiber mats played an important role in the load-bearing component as determined in loading-unloading component tests, which can be considered to have a force of restitution.

키워드

참고문헌

  1. M. Szycher, Handbook of polyurethanes, CRC Press LLC, New York, 1999
  2. A. Formhals, US Patent 1,975,504 (1934)
  3. D. H. Reneker and I. Chun, Nanotechnology, 7, 216 (1996) https://doi.org/10.1088/0957-4484/7/3/009
  4. J. M. Deitzel, J. D. Kleinmeyer, J. K. Hirvonen, and N. C. Beck Tan, Polymer, 42, 8163 (2001) https://doi.org/10.1016/S0032-3861(00)00352-9
  5. K. Ohgo, C. Zhao, M. Kobayashi, and T. Asakura, Polymer, 44, 841 (2003) https://doi.org/10.1016/S0032-3861(02)00819-4
  6. K.H. Lee, H. Y. Kim, M. S. Khil, Y. M. Ra, and D. R. Lee, Polymer, 44, 1287 (2003) https://doi.org/10.1016/S0032-3861(02)00820-0
  7. B. Ding, H. Y. Kim, S. C. Lee, C. L. Shao, D. R. Lee, S. J. Park, G. B. Kwag, and K. J. Choi, J. Polym. Sci., Part B: Polym. Phys., 40, 1261 (2002)
  8. Y. M. Shin, M. M. Hohman, M. P. Brenner, and G. C. Rutledge, Polymer, 42, 9955 (2001) https://doi.org/10.1016/S0032-3861(00)00352-9
  9. M. M. Hohman, M. Shin, G. Rutledge, and M. P. Brenner, Phys. Fluids, 13, 2201 (2001) https://doi.org/10.1063/1.1329651
  10. M. M. Hohman, M. Shin, G. Rutledge, and M. P. Brenner, Phys. Fluids, 13, 2221 (2001) https://doi.org/10.1063/1.1329651
  11. J. J. Feng, Phys. Fluids, 14, 3912 (2002) https://doi.org/10.1063/1.1510664
  12. A. F. Spivak and Y. A.Dzenis, Appl. Phys. Lett., 73, 3067 (1998) https://doi.org/10.1063/1.122674
  13. K. H. Lee, H. Y. Kim, Y. M. La, D. R. Lee, and N. H. Sung, J. Polym. Sci.; Part B: Polym. Phys., 40, 2259 (2002) https://doi.org/10.1002/polb.10293
  14. J. M. Deitzel, J. Kleinmeyer, D. Harris, and N. C. Beck Tan, Polymer, 42, 261 (2001) https://doi.org/10.1016/S0032-3861(00)00352-9
  15. K. H. Lee, H. Y. Kim, Y. J. Ryu, K. W. Kim, and S. W. Choi, J. Polym. Sci.; Part B: Polym. Phys., 41, 1256 (2003) https://doi.org/10.1002/polb.10482
  16. A. Pedicini and R. J. Farris, Polymer, 44, 6857 (2003) https://doi.org/10.1016/j.polymer.2003.08.040
  17. F. Laraba-Abbes, P. Ienny, and R. Riques, Polymer, 44, 821 (2003) https://doi.org/10.1016/S0032-3861(02)00719-X
  18. E. G. Septanika and L. J. Ernst, Mechs. Mater., 30, 265 (1998) https://doi.org/10.1016/S0167-6636(98)00032-5
  19. M. A. Johnson and M. F. Beatty, Int. J. Eng. Sci., 33, 223 (1995) https://doi.org/10.1016/0020-7225(94)00113-X
  20. L. J. Mullins, Rubber Res. Inst. Malaya., 16, 275 (1947)