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The BMAP/G/1Queue with Correlated
Flows of Customers and Disasters
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Abstract A single-server queueing model with the Batch Markovian Arrival Process and
disaster ow correlated with the arrival process is analyzed. The numerically stable algorithm
for calculating the steady state distribution of the system is presented.
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1. Introduction

Notion of a negative customer, ie., the
customer, which removes one or a group of
usual ("positive”) customer from a system upon
the arrival, was introduced by E. Gelenbe in
[10). During the last decade
attention has been paid to study queueing

considerable

systems with negative arrivals. For a
comprehensive analysis of queueing systems
and networks with negative customers, readers
may refer to [1, 2, 4, 10, 11, 13].

The term ‘disaster’ was introduced by Jain
and Sigman [12]. Disaster is a kind of negative
customer which removes all the customers from
the system, including one in service, upon its
arrival.

Chen and Renshaw [6] considered the
M/M/1 queue with disasters. Jain and Sigman
[12] derived a Pollaczek-Khinchine formula for
the Laplace transform of the steady state work
in the system M/G/1 with Poisson arrivals of

disasters.
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Dudin and Nishimura [7] investigated in detail
the BMAP/SM/1 queue with the MAP input
of disasters and instantaneous recovering of the
Dudin and Karolik [8]
analogous system in case when the recovery of

server. investigated
the server takes some random time during
which customers are accumulated or lost.
Numerical analysis of the models 1s given in
{8]. Shin [16] considered the BMAP/G/1 queue
with correlated arrivals of customers and
disasters and non-instantaneous server recovery
after disaster arrival. Semenova investigated
controlled BMAP/SM/1 type queues with the
input flow, service process and disaster flow
depending on the current operation mode which
dynamically depends on the number of
customers in the system, see, eg.[15].

In this work, we examine stationary queue
length distribution in BMAP/G/1 queue with
correlated arrival of customers and disasters
with instantaneous server recovery. In [7, 8 16]
the so called transform approach is exploited.
This approach accounts the analyticity of the
vector generating function of the stationary

distribution in a unit disk of a complex plane.
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It includes calculation of roots of -the polynomial
matrix determinant which is known to be a
serious issue. In opposite to these papers and
to Dudin and Semenova [9]
matrix-analytic = approach was used in
combination with the method of embedded
Markov chains and the theory of Markov

where the

renewal processes (see [Ol), here the
matrix-analytic approach is used in combination
with the method of supplementary variables.
The stable procedure for computing the steady
state distribution of the system " at arbitrary

epoch is presented.
2. Model Descriptions

The input flow into the system is the
following modification of the well-known (see,
eg., [31[14]) BMAP. In this input flow, the
inter—arrival times of customers are directed by
an  irreducible

continuous  time  process

V>t 2 0 (directing process) with the state
space {0’1,"' W } . This process behaves as
follows. Sojourn time of process Y:in state V
is exponentially distributed with parameter,

/’LV,AVZO’ VZO,W_

After this time

expires, the process Y+ jumps to the state r
and the group consisting of kK customers arrives
with probability @« (V:7) k 2 0 o the disaster

happens with probability

d_,(v,r),v,r =0,W 1t is supposed that

do(v;v)=0 v=0,W , and the following
normalization condition fulfills:

w _—

> (f dk(v,r)+d_w(v,r))=l, v=0W

r=0

Introduce into consideration matrices

D,,k2044 D._, having the entries

defined as follows:

(DO)” =—A,,v=0,W

(DO)v,r :A’de(v’r)’v = 05W9v Fr
(D.),, =4d,(v.r)k

v

1

’

(D—oo )v,r :Z’vd-oo (V,r)a v,r = O,W

So, the input flow is completely defined by the
set of matrices D—w, D, k20

D(z)=i D,z*, |z|<1
k=0

Denote

An arriving group of customers is placed into
the buffer of infinite size if the server is busy
at the moment of its arrival, otherwise, the
service of a first customer in a group begins
while the rest of a group enters the buffer.
Service time is characterized by the distribution
function B(¢) with the

B'(s)=[e™dB (1), s20
Transform 0

Laplace-Stieltjes

. When

disaster happens, all the customers leave the
system immediately. It is assumed that the
service device also recovers immediately.

3. Stationary Distribution

Consider the following probabilities:

£,(0,v)=P{i,=0,v,=v}
f,(i,v,x)=P{i, =0,v, =v,x,<x}7

iz2lL,bv=0,W ,x2>0

where i is the number of customers in the
system, Y+ is the state of the directing process

of BMAP, *: is the amount of time left to
finish the service of the customer being served
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at the epoch #2 0 (residual service time).
For every t the

condition holds:

following normalization

Z (ft(o V)+z f,(l,v,+00 ))—1 t=>20

Denote the following probability vectors:

, f,(0,7))
, f G, x))

£,(0)=(£,(0,0), -
.G, x)=(f, 3,0, %),

i21,x>20,t>0

As it is shown in [16], the presence of the
input flow of disasters with non-zero intensity,
D_, # 0is the sufficient condition for the
stationary queue length distribution existence
for the considered system.

Denote the following stationary probability

vectors:

po=lim 1.(0)

P.(x)=lim f,(i,x)

and their Laplace-Stieltjes transforms,

derivatives and generating functions by

B/ (s)= [e™dp,(x), )0
0
Bi(x)=dp,(x)/ds

P (z9)=Y Bl(s)z’
i=1
B(z.0)=Y B,(x)z’

ﬁ'(Z,X)=i pi(x)z' ,x 2 O,|z|S 1
i=1

Lemma 1. Vectors 1_5‘(2,3), Po  and

p'(z,0) satisfy to the following equation:

B (z,8)(sT + D(2)) + PoD(2)B(s) 4

D _,B'(s)+z'p(z,0)(B"(s)-z)=10

where x is the stationary probability vector of

t2 0 which is calculated as

the process Vi»
the unique solution of the following system of

linear equations:

i(by+D_, )=

0,%¢ =1
where € is the column-vector of proper
dimension consisting of all 1’s, 0 is the row

vector consisting of all ’s, I is the identity

matrix.

Proof. It can be easily seen that the process

(itavz!xt)’t 2 0, is a Markov process. Thus,

Kolmogorov-Chapman
equations for the probabilities J:(0,v) and
fii,v,x) i21,v=0,W,x20

matrix form they look as follows:

we can compose

In the

fira(0) = f(OXI + DoAY+ f,(1,A) +

0

[f,(O) 27

L (i, +o0 ']D_wA +0(A)

fial,x) = f,(0)D,AB(x)+

+{f,(,x+ &)~ f,(i, A1 + DyA)
+Zl fi(j.,x+A)D,_,A
+ f,(i+1,A)B(x)+0(A),i>1
following

From these difference equations,
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differential equations for stationary probability
vectors are easy derived:

pPoDo+ p'(1,0) +

(,30 + i B (i, +0 ))D_w =0

i=0

i-1
PG, x)+ oD, B(x)+ 2 BP(J,x)D,_, +

j=1
i1
+3 B(j,x)D,_,+ p'(i +1,0)B(x)
j=1
- p(i,0)=0,i>1
Summing all these equations up and putting

X — +0 we get the following
linear equations:

system of

(ﬁo +Y By (o0 )j(D(m D_)=0

Taking into account normalization condition (1)
when X —> +9© and equation (3) for the vector

e

b, + p.(+0 )= X
x, we conclude that Po z=1 pi(+) .

Finally, applying Laplace-Stieltjes transform and
z-transform to the equations (4) we easy get
(2).

-

Theorem 1. The vectors Po and

p(i,+0 ), i 2 ) gutisfy the following system of
linear equations:
Po= DYy +XD_ W, + p(1,+0 )Y,
B(it0 )= p,Y, + ED_W,

i+1

+ Z ﬁ(.]""w )Yi+1—j7i21
j=1

where Yi and Wi>120 gre the coefficients
of the following matrix expansions:

o0

je"“)’dB (1)

0 3

x .
ZYW:
i=0

i w.z' = mje”‘”‘(l - B(t)de,|z|< 1
i=0

: 0

Proof. Substituting matrix (=D (2)) instead of
scalar value § into formula (2), we get the
following expression:

p(z,0)(Y (2) - I )+
PoD(2)Y(z)+ %D Y (z)=0

Multiply relation (2) by (Y (z) -z ) and
relation (7) by (Z - B .(S)). Sum these

expressions up, put § = 0 , multiply the result
by (D (Z))_l and take into account evident
relations W(z)=D()'¥(z)-1)

= (Y(Z) - I)(D(Z))_l . As the result we
get the following relation:

(2,40 )Y (2) -2 )+

Po(Y(2)-I)+ED_ W (2)=0

Now, equations (5) and (6) are the derived as
the coefficients of the MacLaurent expansion of
relation (8) at the point z = 0.

4. Stable Recursion for Computing the
Stationary Queue Length Distribution

Theorem 2. Probability vector Pocan be

computed as follows:

-1
ﬁoz_iD—w[z DkaJ
k=0

where G is the minimal nonnegative solution of
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the matrix equation

1

G=i Y,G'
i=0

Proof. Multiplying equations of the system (5)
and (6) by and summing them up we get the
following expression:

Po(G-1)+%D_, > W,G' =0
i=0
It can be shown that (G = 1) is invertible if
D_, # 0 Thus, multiplying relation (10) by

(G-1)"and taking into

@ © -1
DWGH(G-1)"= (Z DkG"j
i=0 k=0 )

we get (9).

account

Theorem 3. Probability vectors pi(+0),i21 ,
aan be computed recursively by

B,(+0)=(p, Y, + ¥D_ W, +

i1 _ _
+ Y P, NI -F)7 iz
j=1

where
Z: z YkG k—i
k=i . )
W= W,G',i>0
k=i
Proof. Proof is implemented by multiplying

equations of the system (6) byG ' ', k 21

for i 2 k and summing them up:

Numerical stability of the described procedures

for calculating the vectors Pi(+® )k 21

stems from the fact that all matrices involved

into recursion (11) are non-negative. . Presented
results can be easy extended to the case when
the recovering of the server is not

instantaneous.
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