DOI QR코드

DOI QR Code

무세포 단백질합성 시스템 기반의 epoxide hydrolase 발현 및 활성 분석

Assay of Epoxide Hydrolase Activity Based on PCR-linked in vitro Coupled Transcription and Translation System.

  • 이옥경 (경성대학교 공과대학 식품공학과) ;
  • 김희숙 (경성대학교 공과대학 식품공학과) ;
  • 이은열 (해양, 극한생물 분자유전체 연구단)
  • Lee, Ok-Kyung (Department of Food Science and Technology, Kyungsung University) ;
  • Kim, Hee-Sook (Department of Food Science and Technology, Kyungsung University) ;
  • Lee, Eun-Yeol (Marine and Extreme Genome Research Center)
  • 발행 : 2005.10.01

초록

Coupled transcription/translation cocktail을 이용하여 R. glutinis EH 유전자를 in vitro에서 합성하고 활성을 평가하였다. SDS-PAGE 및 immunoblotting을 통하여 45 kDa 크기의 EH 단백질이 발현되었음을 확인하였고, NBP assay 및 chiral GC 분석을 통해 발현된 단백질이 (R)-styrene oxide에 대한 입체선택성이 있음을 확인하였다. 따라서 무세포 단백질 합성 시스템을 이용하여 입체선택성을 유지시킨 EH 유전자 발현이 가능하며, 이러한 방법은 putative EH 유전자 탐색 등에 효율적으로 응용될 것이다.

Cell-free expression is a powerful tool for rapid protein analysis, enabling an efficient identification of gene without cumbersome procedure of transformation and cell culture. Epoxide hydrolase (EH) gene of Rhodotorula glutinis was simply amplified by PCR, and the resultant gene was expressed in vitro using a coupled Transcription/translation system. The cell-free expressed EH protein mixture exhibited the enantioselective hydrolysis activity toward (R)-styrene oxide, representing that cell-free protein synthesis system can be used for the rapid expression of an enantioselective enzyme for an efficient identification of the chiral activity.

키워드

참고문헌

  1. Archelas, A. and R. Furstoss. 2001. Synthetic applications of epoxide hydro lases. Current Opinion in Chem. Biol. 5, 112-119 https://doi.org/10.1016/S1367-5931(00)00179-4
  2. Besse, P. and H. Veschambre. 1994. Chemical and biological synthesis of chiral epoxides. Tetrahedron 50, 8885-8927 https://doi.org/10.1016/S0040-4020(01)85362-X
  3. Choi, W. J., E. C. Huh, H. J. Park, E. Y. Lee and C. Y. Choi. 1998. Kinetic resolution for optically active epoxides by microbial enantioselective hydrolysis. Biotechnol. Tech. 12, 225-228 https://doi.org/10.1023/A:1008825508904
  4. Genzel, Y., A. Archelas, Q. B. Broxterman, B. Schulze and R. Furstoss. 2002. Microbiological transformation 50: selection of epoxide hydrolase for enzymatic resolution of 2-, 3-, or 4-pyridyloxirane. J. Mol. Catal. B: Enzy. 16, 217-222 https://doi.org/10.1016/S1381-1177(01)00064-9
  5. Jung S. T., S. H. Kang, T. J. Kang, R. G. Kim, S. H. Suh, J. H. Woo, E. Y. Lee and C. Y. Choi. 1999. An efficient translational termination of human erythropoietin in Escherichia coli by altering the base following a stop codon. Biotechnol. Letters 13, 761-764
  6. Jung, G. Y., E. Y. Lee, Y. -E. Kim, B. W. Jung, S.-H. Kang and C. Y. Choi. 2000. Stabilization effect of zeolite on DHFR mRNA in a wheat germ cell-free protein synthesis system. J. Biosci. Bioeng. 89, 193-195 https://doi.org/10.1016/S1389-1723(00)88736-8
  7. Kang, S. H., T. J. Oh, R. G. Kim, T. J. Kang, S. H. Hwang, E. Y. Lee and C. Y. Choi. 2000. An efficient cell-free protein synthesis system using periplasmic phosphatase-removed S30 extract. J. Micobiol.Methods 43, 91-96 https://doi.org/10.1016/S0167-7012(00)00206-2
  8. Katzen, F., G. Chang and W. Kudlicki. 2005. The past, present and future of cell-free protein synthesis. Trends in Biotechnol. 23, 150-156 https://doi.org/10.1016/j.tibtech.2005.01.003
  9. Lee, E. Y., S.-S. Yoo, H. S. Kim, S. J. Lee, Y.-K. Oh and S. Park 2004. Production of (S)-styrene oxide by recombinant Pichia pastoris containing epoxide hydrolase from Rhodotorula glutinis. Enzy. Microbial Technol. 35, 624-631 https://doi.org/10.1016/j.enzmictec.2004.08.016
  10. Steinreiber, A. and K. Faber. 2001. Microbial epoxide hydrolases for preparative biotransformations. Current Opinion in Biotechnol. 12, 552-558 https://doi.org/10.1016/S0958-1669(01)00262-2
  11. Zocher, F., M. Enzelberger, U. Bomscheuer, B. Hauer and R. Schmid. 1999. A colorimetric assay suitable for screening epoxide hydrolase activity. Analitica Chemica Acta 391, 345-351 https://doi.org/10.1016/S0003-2670(99)00216-0