DOI QR코드

DOI QR Code

바이오촉매 및 생물전환을 이용한 광학활성 에폭사이드 제조

Biocatalysis and Biotransformation for the Production of Chiral Epoxides

  • 김희숙 (경성대학교 공과대학 식품공학과) ;
  • 이옥경 (경성대학교 공과대학 식품공학과) ;
  • 이은열 (해양, 극한생물 분자유전체 연구단)
  • Kim, Hee-Sook (Dapartment of Food Science and Technology, Kyungsung University) ;
  • Lee, Ok-Kyung (Dapartment of Food Science and Technology, Kyungsung University) ;
  • Lee, Eun-Yeol (Marine and Extreme Genome Research Center)
  • 발행 : 2005.10.01

초록

광학활성 에폭사이드는 광학활성 의약품, 기능성 식품 제조용 광학활성 중간체로 사용될 수 있다. 바이오촉매를 이용하여 광학활성 에폭사이드를 제조하는 방법으로는, mono-oxygenase나 peroxidase 등을 이용하여 알켄 기질의 이중결합을 비대칭 에폭시화반응을 통해 제조하는 방법이 있다. Kinetic resolution을 이용하는 방법으로는 epoxide hydrolase를 이용하여 특정 이성질체만을 diol로 가수분해하여 제거시켜 광학활성 에폭사이드를 얻는 방법 등이 있다. 다양한 생물전환 기술, directed evolution 및 site-specific muta-genesis 등을 이용한 광학활성 에폭사이드 제조용 바이오촉매개량 기술 등 효율적인 광학활성 에폭사이드 제조 시스템에 대한 연구 개발도 활발히 진행되고 있어 향후에 상업화가 가능할 것으로 기대된다.

Chiral epoxides are important chiral synthons in organic synthesis for the production of chiral pharmaceuticals and functional food additives. Chiral epoxides can be synthesized by enantioselective introduction of oxygen to double bond of substrate by monooxygenase. Peroxidase also carry out asymmetric epoxidation of alkene in the presence of hydrogen peroxide. Kinetic resolution of racemic epoxides via enantioselective hydrolysis reaction by epoxide hydrolase (EH) is a very promising method since chiral epoxides with a high optical purity can be obtained from cheap and readily available racemic epoxides. In this review, various biocatalytic approaches for the production of chiral epoxides with several examples are presented and their commercial potential is discussed.

키워드

참고문헌

  1. Archelas, A. and R. Furstoss. 2001. Synthetic applications of epoxide hydrolases, Current Opinion in Chem. Biology. 5, 112-119 https://doi.org/10.1016/S1367-5931(00)00179-4
  2. Archelas, A., M. Arand, J. Baratti and R. Furstoss. 1999. French Patent Application No. 9905711; (2000), International Patent Application No. PCT/FR00/01217
  3. Besse, P. and H. Veschambre. 1994. Chemical and biological synthesis of chiral epoxides, Tetrahedron 50, 8885-8927 https://doi.org/10.1016/S0040-4020(01)85362-X
  4. Choi, W. J., C. Y. Choi, J. A. M. de Bont and C. A. G. M Weijers. 1999. Resolution of 1,2-epoxyhexane by Rhodotorula glutinis using a two-phase membrane bioreactor, Appl. Microbial. Biotechnol. 53, 7-11 https://doi.org/10.1007/s002530051606
  5. Choi, W. J., Choi, C. Y., J. A. M. de Bont and C. A. G. M. Weijers. 2000. Continuous production of enantiopure 1,2epoxyhexane by yeast epoxide hydrolase in a two-phase membrane bioreactor, Appl. Microbial. Biotechnol. 54, 641-646 https://doi.org/10.1007/s002530000451
  6. Choi, W. J., E. C. Huh, H. J. Park, E. Y. Lee and C. Y. Choi. 1998. Kinetic resolution for optically active epoxides by microbial enantioselective hydrolysis, Biotechnol. Tech. 12, 225-228 https://doi.org/10.1023/A:1008825508904
  7. Choi, W. J., E. Y. Lee, S. J. Yoon and C. Y. Choi. 1999. Biocatalytic production of chiral epichlorohydrin in organic solvent, J. Biosci. Bioeng. 88, 339-341 https://doi.org/10.1016/S1389-1723(00)80022-5
  8. Oeij, M., A. Archelas and R. Furstoss. 1998. Microbiological transformations 42. A two-phase preparative scale process for an epoxide hydrolase catalysed resolution of para-bromou - methyl-styrene oxide. Occurrence of a surprising enantioselectivity enhancement, Tetrahedron: Asymmetry 9, 1839-1842 https://doi.org/10.1016/S0957-4166(98)00180-3
  9. de Vries, E. J. and D. B. Janssen. 2003. Biocatalytic conversion of epoxides, Current Opinion Biotechnol. 14, 414-420 https://doi.org/10.1016/S0958-1669(03)00102-2
  10. Faber, K. and W. Kroutil. 2002. Streoselectivity in biocatalytic enantioconvergent reactions and a computer program for its determination, Tetrahedron: Asymmetry 13, 377-382 https://doi.org/10.1016/S0957-4166(02)00084-8
  11. Geigert, J., D. J. Dalietos, D. S. Hirano, T. D. Lee and S. L. Neidleman. 1986. Epoxidation of alkenes by chloroperoxidase catalysis, Biochem. Biophys. Res. Comm. 136, 778-782 https://doi.org/10.1016/0006-291X(86)90507-3
  12. Genzel, Y., A. Archelas, Q. B. Broxterman, B. Schulze and R. Furstoss. 2002. Microbiological transformation 50: selection of epoxide hydrolase for enzymatic resolution of 2-, 3-, or 4-pyridyloxirane, J. Mol. Catal. B: Enzy. 16, 217-222 https://doi.org/10.1016/S1381-1177(01)00064-9
  13. Han, J. H. 2004. Production of enantiopure (S)-styrene oxide using a mutant of Pseudomonas putida lacking styrene oxide isomerase. M. S. Dissertation, Dept. of Chemical Engineering, Pusan National University, Busan
  14. Hasnaoui, G., Spelberg, J. H. L., de Vries, E., Tang, L., Hauer, B. and Janssen, D. B. 2005. Nitrite-mediated hydrolysis of epoxides catalyzed by halohydrin dehalogenase from Agrobacterium radiobacter AD1: a new tool for the kinetic resolution of epoxides, Tetrahedron: Asymmetry 16, 1685-1692 https://doi.org/10.1016/j.tetasy.2005.03.021
  15. Kasai, N., K. Tsujimira, K. Unoura and T. Suzuki. 1990. Degradation of 2,3-dichloro-l-propanol by a Pseudomonas sp, Agric. Bioi. Chem. 54, 3185-3190 https://doi.org/10.1271/bbb1961.54.3185
  16. Lee, E. Y., S.-S. Yoo, H. S. Kim, S. J. Lee, Y.-K. Oh and S. Park 2004. Production of (S)-styrene oxide by recombinant Pichia pastoris containing epoxide hydrolase from Rhodotorula glutinis, Enzyme Microbial Technol. 35, 624-631 https://doi.org/10.1016/j.enzmictec.2004.08.016
  17. Manoj KM, Archelas A, Barati J. and R. Furstoss. 2001. Microbiological transformations 45. A gren chemistry preparative scale synthesis of enantiopure building blocks of Eliprodil: elaboraton of a high substrate concentraton epoxide hydrolase-catalyzed hydrolytic kinetic resolution process, Tetrahedron 57, 695-701 https://doi.org/10.1016/S0040-4020(00)01032-2
  18. Matsunaga, I. and Y. Shiro. 2004. Peroxide-utilizing biocatalysts: structural and functional diversity of heme-containing enzymes, Curro Opin. Chem. BioI. 8, 127-132 https://doi.org/10.1016/j.cbpa.2004.01.001
  19. Moussou, P., A. Archelas, J. Baratti and R. Furstoss. 1998. Microbiological transformations. Part 39: Determination of the regioselectivity occurring during oxirane ring opening by epoxide hydrolases: a theoretical analysis and a new method for its determination, Tetrahedron: Asymmetry 9, 1539-1547 https://doi.org/10.1016/S0957-4166(98)00122-0
  20. Nakamura, T., F. Yu, W. Mizunashi and J. Watanabe. 1991. Microbial transformation of prochiral 1,3-dichloro-2- propanol into optically active 3-chloro-l,2-propanediol, Agric. BioI. Chem. 55, 1931-1933 https://doi.org/10.1271/bbb1961.55.1931
  21. O'Leary, N. D., K. E. O'Conner, W. Duetz and A. D. W. Dobson. 2001. Transcriptional regulation of styrene degradation in Pseudomonas putida CA-3, Microbiology 147, 973-979 https://doi.org/10.1099/00221287-147-4-973
  22. Panke, S., A. Meyer, C. M. Huber, B. Witholt and M. G. Wubbolts. 1999. An alkane-responsive expression system for the production of fine chemicals, Appl. Environ. Microbiol. 65, 2324-2332
  23. Panke, S., B. Witholt, A. Schmid and M. G. Wubbolts. 1998. Towards a biocatalyst for (S)-styrene oxide production: characterization of the styrene degradation pathway of Pseudomonas sp. strain VLB120, Appl. Environ. Microbiol. 64, 2032-2043
  24. Panke, S., M. G. Wubbolts, A. Schmid and B. Witholt. 2000. Production of enantiopure styrene oxide by recombinant Escherichia coli synthesizing a two-component styrene monooxygenase, Biotechnol. Bioeng. 69, 91-100 https://doi.org/10.1002/(SICI)1097-0290(20000705)69:1<91::AID-BIT11>3.0.CO;2-X
  25. Panke,S., Martin Held, M. G. Wubbolts, B. Witholt and A. Schmid. 2000. Pilot-scale production of (S)-styrene oxide from styrene by recombinant Escherichia coli synthesizing styrene monooxygenase, Biotechnol. Bioeng. 80(1), 33-41 https://doi.org/10.1002/bit.10346
  26. Panke, S., V. de Lorenzo, A. Kaiser, B. witholt and M. G. Wubbolts. 1999. Engineering of a stable whole-cell biocatalyst capable of (S)-styrene oxide formation for continuous twoliquid-phase applications, Appl. Environ. Microbiol. 65, 5619-5623
  27. Park, J. B. 2005. The use of oxidative enzymes in organic synthesis, Proc. Bioindustry Education Program 2005, Seoul National University, Seoul
  28. Park, M. S. 2004. Production of chiral styrene oxide in a recombinant E. coli containing styrene monooxygenase originated from Pseudomonas putida SN-l. M. S. Dissertation, Dept. of Chemical Engineering, Pusan National University, Busan
  29. Schmid, A., J. S. Dordick, B. Hauer, A. Kiener, M. Wubbolts and B. Witholt. 2001a. Industrial biocatalysis today and tomorrow, Nature 409, 258-268 https://doi.org/10.1038/35051736
  30. Schmid, A., K. Hofstetter, H.-J. Feiten, F. Hollman and B. Witholt. 2001b. Integrated biocatalytic synthesis on gram scale: The highly enantioselective preparation of chiral oxiranes with styrene monooxygenase, Adv. Synth. Catal. 343, 1-6 https://doi.org/10.1002/1615-4169(20010129)343:1<1::AID-ADSC1>3.0.CO;2-Y
  31. Sheldon, R. A. 1993. Chirotechnology, Marcel Dekker. New York
  32. Spelberg, J. H. L., van Hylckama J. Vlieg, E. T., Bosma, T., Kellogg, R. M. and Janssen, D. B. 1999. A tandem enzyme reaction to produce optically active halohydrins, epoxides and diols, Tetrahedron: Asymmetry 10, 2863-2870 https://doi.org/10.1016/S0957-4166(99)00308-0
  33. Steinreiber, A. and K. Faber. 2001. Microbial epoxide hydrolases for preparative biotransformations, Current Opinion in Biotechnol. 12, 552-558 https://doi.org/10.1016/S0958-1669(01)00262-2
  34. Suzuki, T., N. Kasai, R. Yamamoto and N. Minamiura. 1992. Isolation of a bacterium assimilating (R)-3-chloro-1,2-propanediol and production of (S)-3-chloro-1,2-propanediol using microbial resolution, J. Ferment. Bioeng. 73, 443-448 https://doi.org/10.1016/0922-338X(92)90135-H
  35. Tokunaga, M., J. F. Larrow, F. Kakiuchi and E. N Jacobsen. 1997. Asymmetric catalysis with water: Efficient kinetic resolution of terminal expoxides by means of catalytic hydrolysis, Science 277, 936-938 https://doi.org/10.1126/science.277.5328.936
  36. van Loo, B., J. H.L. Spelberg, J. Kingma, T. Sonke, M. G. Wubbolts and D. B. Janssen. 2004. Directed evolution of epoxide hydrolase from A. radiobactertoward higher enantioselectivity by error-prone PCR and DNA shuffling, Chem. BioI. 11, 981-990 https://doi.org/10.1016/j.chembiol.2004.04.019
  37. van Rantwijk, F. and R. A. Sheldon. 2000. Selective oxygen transfer catalysed by heme peroxidases: synthetic and mechanistic aspects, Curro Opin. Biotech. 11, 554-564 https://doi.org/10.1016/S0958-1669(00)00143-9